

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL

RANDOM NUMBER GENERATOR

PREPARED FOR INTEL BY

Mike Hamburg

Paul Kocher

Mark E. Marson

Cryptography Research, Inc.
575 Market St., 11

th
 Floor

San Francisco, CA 94105

(415) 397-0123

March 12, 2012

DISCLAIMER: This report was prepared by Cryptography Research, Inc. (CRI) under contract to Intel Corporation, and reflects the
opinions of the authors, based on their knowledge at the time of authorship, and may contain errors. Notwithstanding anything to the

contrary, in performing this evaluation, CRI has not engaged in any evaluation or consulting, and makes no recommendations, of any

kind, relating to resistance to side channel analysis (e.g., differential power analysis) or countermeasures therefor, and the making,
using, selling, offering for sale, or importing of such countermeasures would require a separate license under CRI’s patents pertaining

thereto.

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 2 OF 22

Contents

1 Introduction __ 3

1.1 Entropy ___ 3
1.2 Deterministic random bit generators _______________________________________ 4
1.3 The need for nondeterministic random bit generators ________________________ 4

2 Architecture __ 5

2.1 System overview ___ 5
2.2 Entropy source ___ 7
2.3 Health and “swellness” tests __ 8
2.4 Deterministic random bit generator _______________________________________ 9

2.4.1 Conditioning __ 9
2.4.2 Reseeding __ 10
2.4.3 Generation ___ 11

2.5 Built-In Self-Test (BIST) __ 11
2.6 Normal operation ___ 12

3 Theoretical Analysis __ 13

3.1 Entropy source __ 13
3.2 System analysis ___ 14

3.2.1 Failure modes ___ 14
3.2.2 Health checks ___ 15
3.2.3 Swellness check ___ 16
3.2.4 Conditioning data for seeding/reseeding the DRBG _______________________________ 16
3.2.5 Post-processing the data with the DRBG __ 17
3.2.6 Clock gating __ 17

4 Empirical Tests __ 17

4.1 Basic statistical tests ___ 17
4.2 Entropy, bit prediction, and Markov modeling _____________________________ 19
4.3 Charge tracking ___ 20
4.4 Randomness tests __ 20

5 Conclusions __ 20

6 Bibliography ___ 22

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 3 OF 22

1 Introduction

Good cryptography requires good random numbers. This paper evaluates Intel’s

hardware-based digital random number generator (RNG) for use in cryptographic

applications.

Almost all cryptographic protocols require the generation and use of secret values that

must be unknown to attackers. For example, random number generators are required to

generate public/private keypairs for asymmetric (public key) algorithms including RSA,

DSA, and Diffie-Hellman. Keys for symmetric and hybrid cryptosystems are also

generated randomly. RNGs are used to create challenges, nonces (salts), padding bytes,

and blinding values.

Because security protocols rely on the unpredictability of the keys they use, random

number generators for cryptographic applications must meet stringent requirements. The

most important property is that attackers, including those who know the RNG design,

must not be able to make any useful predictions about the RNG outputs. In particular, the

apparent entropy of the RNG output should be as close as possible to the bit length.

1.1 Entropy

Entropy is a measurement of how random a particular process is. While there are several

ways to measure entropy, in this paper we will primarily use Shannon entropy [1]





n

i

ii ppH
1

21 log

and min-entropy [2]

)log(min 2
1

i

n

i
pH 




.

In the above formulas, pi is the probability of the process being in the ith of n possible

states, or returning the ith of n possible outputs. By using a base-2 logarithm we are

measuring the entropy in bits. Shannon entropy measures the average amount of

information required to describe the state, whereas min-entropy measures the probability

that an attacker can guess the state with a single guess. The min-entropy of a process is

always less than or equal to its Shannon entropy.

In the case of a random number generator that produces a k-bit binary result, pi is the

probability that an output will equal i, where
ki 20  . Thus, for a perfect random

number generator, pi = 2
-k

. In this case the Shannon entropy and min-entropy of the

output are both equal to k bits, and all possible outcomes are equally likely. The

information present in the output cannot, on average, be represented in a sequence shorter

than k bits, and an attacker cannot guess the output with probability greater than 2
-k

.

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 4 OF 22

An RNG for cryptographic applications should appear to computationally-bounded

adversaries to be close as possible to a perfect RNG. For this review, we analyze whether

there is any feasible way to distinguish the Intel RNG from a perfect RNG.

1.2 Deterministic random bit generators

Most “random” number sources actually utilize a deterministic random bit generator

(DRBG). DRBGs use deterministic processes to generate a series of outputs from an

initial seed state. Because the output is purely a function of the seed data, the actual

entropy of the output can never exceed the entropy of the seed. It can, however, be

computationally infeasible to distinguish a well-seeded DRBG from a perfect RNG.

For example, consider a DRBG seeded with 256 bits of entropy that produces more than

256 bits of output. An attacker who successfully guessed the seed data could predict the

entire DRBG output. Guessing a 256-bit seed value is computationally infeasible,

however, so such a DRBG can be appropriate for cryptographic applications even though

its outputs are not truly random.

Cryptographic applications often demand extremely high quality output, necessitating

great care in the development, testing, and selection of DRBG algorithms. NIST has

published SP 800-90A [2], which specifies several DRBG constructions. The publication

includes recommendations for instantiating, using, and reseeding DRBGs.

DRBGs also require random seeds. A deterministic process cannot create randomness, so

ultimately a nondeterministic (aka “true”) random number generator is still required for

seeding these constructions.

1.3 The need for nondeterministic random bit generators

A nondeterministic random bit generator uses a nondeterministic source to produce

randomness. Most operate by measuring unpredictable natural processes, such as thermal

(resistance or shot) noise, atmospheric noise, or nuclear decay. The entropy,

trustworthiness, and performance all depend on the underlying entropy source.

A DRBG by itself will be insecure without an entropy source for seeding. Seeding

requires a source of true randomness, since it is impossible to create true randomness

from within a deterministic system.

On computers without a hardware entropy source, programmers typically try to obtain

entropy for seed data using existing peripherals. Modern UNIX and Windows OS’s have

OS-level RNGs based on the timing of kernel IO events. Unfortunately, the quality of the

entropy collected depends upon the system’s configuration and hardware. For example,

the entropy available from embedded devices without hard drives or keyboards may be

insufficient. Similarly, an operation that is secure on a busy test network may become

insecure when moved to a high-security, low-traffic environment.

Even when it is possible for applications to produce their own secure random data, many

do not. Reviews by Cryptography Research frequently identify weaknesses in random

number generation. Bruce Schneier writes, “Good random-number generators are hard to

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 5 OF 22

design, because their security often depends on the particulars of the hardware and

software. Many products we examine use bad ones.” [3]

For example, Luciano Bello discovered a serious flaw in the DRBG that shipped with the

OpenSSL cryptography library on Debian and Ubuntu Linux systems from September

2006 to May 2008 [4]. All OpenSSL keys generated by the affected systems were

compromised, including server certificates, SSH login keys and email signing/encryption

keys. More recently, in 2012 a study showed that an unexpectedly large number of RSA

moduli share common prime factors, which can easily be computed using the GCD

algorithm. One of the most likely causes is poor random number generation processes

[5].

The need for strong randomness is not limited to key generation. For example, the

popular DSA and ECDSA digital signature standards require a random value when each

signature is produced. Even very slight biases in the RNG used to produce this value can

lead to exploitable cryptographic weaknesses. Bleichenbacher discovered that the nonce

generation method defined in FIPS 186 was slightly biased, and this bias could be used to

mount a cryptanalytic attack against DSA and ECDSA [6].

Although RNG problems are common, flaws are often missed because there is no

computationally-bounded test that can analyze an RNG’s output and authoritatively

confirm that the output is random. In addition, cryptographic software libraries often

leave it to application developers to supply their own seed material, but programmers

may lack the experience to do this effectively.

In other cases, system designers are faced with a trade-off between security and

convenience. For example, to avoid having to collect fresh seed data each time the

program loads, many software applications store their seed material on the hard drive

where there can be a risk of compromise. The best solution to these challenges is for the

hardware to provide a well-designed, efficient, and easy-to-use hardware entropy source.

2 Architecture

Intel provided CRI with detailed documentation on the RNG, as well as access to its

principal developers. This section describes the overall architecture and the main

components of the system.

2.1 System overview

A block diagram of the major components of the Intel Ivy Bridge RNG is shown in

Figure 1 below.

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 6 OF 22

Digital Post-ProcessingRaw Entropy
Generation

Health &
Swellness

Testing
(OHT)

O
STE Q

u
eu

es (2x256 b
its)

Sh
ift R

egister (256 b
its)

Entropy
Source

(ES)
C

o
n

d
itio

n
ed

 Entro
p

y (C
E) (256 b

its)

C
o

n
d

itio
n

in
g

O
u

tp
u

t G
en

eratio
n

 &
R

eseed
in

g

Deterministic Random Bit
Generator (DRBG)

O
u

tp
u

t B
u

ffers (4x128 b
its)

Figure 1: Block diagram of the Intel RNG (adapted from [7])

Most modern RNGs, including the Intel Ivy Bridge design, consist of an entropy source

(ES) followed by digital post-processing logic. Raw output from entropy sources

generally contains detectable biases and other artifacts that distinguish the output from

random binary data. The purpose of the post-processing logic is to convert this raw

output into lower-bitrate, but higher-quality, random data.

The Intel RNG's post-processing logic is relatively sophisticated. Like many software-

based RNGs, the post-processing uses strong cryptography to prevent deficiencies in the

entropy source from leading to exploitable weaknesses. In particular, the RNG maintains

an entropy pool which is seeded using a relatively large amount of data from the ES.

Even if the ES is severely degraded, the final output will remain of high quality and

cryptographically strong and should appear indistinguishable from true random by

computationally-bounded adversaries (despite being nonrandom from an information

theoretic perspective).

One drawback of using post-processing is that defects in the entropy source become more

difficult to observe. As a result, users of the RNG have a more difficult time assessing the

quality of the underlying entropy source, and some catastrophic failure modes can

actually become difficult to detect. The Intel Ivy Bridge designers have employed several

strategies that help mitigate these concerns, including the incorporation of logic to

monitor the health of the entropy source. In addition, while raw access to entropy source

output is not available on production parts, test parts can provide direct access to entropy

source outputs.

The Intel RNG operates as follows:

1. The entropy source (ES) is a self-clocking circuit which operates asynchronously

and generates random bits at a high rate (about 3 GHz).

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 7 OF 22

2. Random bits generated by the ES are combined, sampled by the synchronous

logic, and grouped into 256-bit blocks in a shift register.

3. Basic statistical tests are performed by the online health test logic (OHT) on each

256-bit block to check for potential failure modes of the ES.

4. The 256-bit blocks in the online self-tested entropy (OSTE) queue are

cryptographically processed into a 256-bit conditioned entropy pool by the

conditioning logic.

5. The conditioned entropy pool is used to reseed the DRBG.

6. The DRBG generates the final bits output by the RNG.

The rest of this section describes in detail each of the components, and how they operate

and interact.

2.2 Entropy source

The entropy source (ES) at the heart of the Intel RNG is a self-oscillating digital circuit

with feedback, shown in Figure 2 below.

Figure 2: Entropy source for the Intel RNG (from [8])

The ES is a dual differential jamb latch with feedback. It is a latch formed by two cross-

coupled inverters (nodes A and B). The circuit is self-clocking (heart_clock), and

designed such that when the clock is running, the circuit enters a metastable state. The

circuit then resolves to one of two possible states, determined randomly by thermal noise

in the system. The settling of the circuit is biased by the differential in the charges on the

capacitors (A caps and B caps). The state to which the latch resolves is the random bit of

output of the ES.

The circuit is also designed with feedback to seek out its metastable region. Based on

how the latch resolves, a fixed amount of charge is drained from one capacitor and added

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 8 OF 22

to the other. The goal is to have the latch oscillate around the metastable region, using the

last output to determine the charge changes to the capacitors. At normal process, voltage

and temperature (PVT) conditions, the ES runs at about 3 GHz. See [8] for a detailed

description of the ES circuit.

Intel has developed a theoretical mathematical model for the ES, described in [8] and [9].

We analyze this model theoretically and empirically in Sections 3 and 4, respectively.

The rest of the RNG is clocked at 800 MHz. The ES generates random bits at a rate of

about 3 GHz, and they need to be transferred across to the synchronous region of the

circuit.

The RNG provides an option to accumulate samples from the ES with a running XOR

circuit. This XOR sum of all previous ES bits is stored in a single-bit buffer. When an ES

output arrives, it is XORed with the current value of the buffer, and the result is written

back to the buffer. The buffer is then sampled by the synchronous logic at 800 MHz.

Alternatively, the RNG can be configured to overwrite the buffer with each new ES

output. In this case, some ES outputs will not be sampled before the buffer is overwritten,

and thus will not be used.

Future versions of the RNG will use a different synchronization logic. The ES output will

be deserialized, and then sampled in parallel into the synchronous region, thereby

preserving all the ES samples for post-processing.

2.3 Health and “swellness” tests

Once the data is sampled into the synchronous region, it is passed serially to the on-line

health test unit in a sliding window, and from there into the 2-deep, 256-bit-wide Online

Self Tested Entropy (OSTE) FIFO buffer.

The health check unit evaluates the health of each 256-bit sample. It counts how many

times each of six different bit patterns appears in a sample. The sample is deemed

“healthy” if and only if the number of times each pattern appears falls within certain

bounds. The bit patterns and the bounds for each are shown in Table 1 below.

Bit pattern Allowable number of occurrences per 256-bit sample

1 109 < n < 165

01 46 < n < 84

010 8 < n < 58

0110 2 < n < 35

101 8 < n < 58

1001 2 < n < 35

Table 1: Health bounds for 256-bit samples

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 9 OF 22

The bounds were determined empirically by Intel, but are close to what one would expect

to see for truly random data. The probability that a random sample from a uniform

distribution fails the health checks is about 1%.

The health checks are not intended as a comprehensive measure of entropy. Instead, they

intended to check if the entropy source is badly broken and stuck outputting simple

repeating patterns such as all zeros, all ones, or alternating zeros and ones.

The heath test unit tracks the health status of the most recent 256 256-bit samples. The

ES is considered to be “swell” if and only if at least 128 of the most recent 256 samples

are healthy. All samples are consumed by DRBG and used to condition the entropy pool,

whether or not they are healthy (Section 2.4.1). However, samples are not counted as

contributing fresh entropy to the entropy pool unless they are healthy and the ES is

already in the “swell” state.

Once the first 256-bit OSTE buffer is full, the bits are shifted in parallel to a second 256-

bit OSTE buffer. The bits in the second OSTE buffer are then passed to the Deterministic

Random Bit Generator (DRBG), and are processed as described in Section 2.4 below.

2.4 Deterministic random bit generator

The DRBG accumulates the ES samples into a conditioned entropy pool. It then uses the

conditioned entropy pool to reseed itself and generate the final random output. Details of

the process are shown below.

2.4.1 Conditioning

The DRBG has a 256-bit buffer containing a pool of “conditioned entropy” (CE[255:0]),

which is used to reseed the DRBG. The conditioned entropy pool is updated using the

data values drawn from the second OSTE buffer (OSTE[255:0]). The lower and upper

halves of the conditioned entropy pool are updated independently.

First, the lower half of the entropy pool (CE[127:0]) is updated by processing the current

256 bits in OSTE buffer with AES CBC-MAC mode as defined in [10], using a 128-bit

non-secret fixed key K' that is identical in all chips. The pseudocode for this update

process is shown below.

1. Temp[127:0] = AES(K', CE[127:0])

2. Temp[127:0] = AES(K', OSTE[127:0] XOR Temp[127:0])

3. CE[127:0] = AES(K', OSTE[255:128] XOR Temp).

This process is repeated (with new data in the OSTE buffer each time) if the OSTE buffer

is not healthy, or if the ES is not in the “swell” state.

The upper half of the entropy pool, CE[255:128], is then updated using the same process,

using fresh values from OSTE[255:0].

1. Temp[127:0] = AES(K',CE[255:128])

2. Temp[127:0] = AES(K',OSTE[127:0] XOR Temp[127:0])

3. CE[255:128] = AES(K',OSTE[255:128] XOR Temp).

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 10 OF 22

As with the lower half of the entropy pool, the update process is repeated until a healthy

sample is processed while the ES is “swell”.

The CE update process is shown in Figure 3 below.

AESK’

CE[127:0]

AES

OSTE[127:0]

AES

OSTE[255:128]

CE[127:0]

K’

K’

AESK’

CE[255:128]

AES

OSTE[127:0]

AES

OSTE[255:128]

K’

K’

CE[255:128]

Repeat while
OSTE[255:0] is
not healthy or
ES is not swell

Repeat while
OSTE[255:0] is
not healthy or
ES is not swell

Note: Each sequence of 3 AES operations uses a fresh OSTE value.

Figure 3: Process for updating CE[127:0] and CE[255:128]

The CE update processes combines the prior state of each half of CE with 256 bits from

OSTE (or more if a half is updated for health or swellness reasons). Each update process

is designed to fully randomize half of CE, even if the OSTE bits are partially random. For

example, if either OSTE[127:0] or OSTE[255:128] is random and independent, the

updated value for the half of CE will be fully random. More generally, we believe that the

AES operation will reliably produce a random result if the OSTE’s 256 bits contain at

least 128 bits of entropy.

Thus, this stage should be effective at producing high quality output if there are at least

0.5 bits of entropy per bit sampled from the ES, excluding bits produced in blocks that

are not healthy or while the ES is not swell. If the entropy from ES is not above 0.5 bits

per bit sampled, the output of this stage may cease to be fully random.

2.4.2 Reseeding

The reseeding process must be completed before any random output can be produced,

and is additionally performed frequently during normal operation. In particular, the

DRBG requires reseeding after it produces 512 128-bit outputs (65536 bits total).

However, under normal operations, the DRBG will reseed much more often.

Before the reseeding process can begin, the conditioned entropy pool must have been

updated successfully. The lower half (CE[127:0]) is then used to reseed the DRBG AES

key K[127:0]. (Note that K is different from the conditioning key K'). The upper half,

CE[255:128] is used to reseed the counter (V[127:0]). The reseeding of the key and

counter proceed are defined in [2]. The pseudocode for the process is shown below.

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 11 OF 22

Let K denote the key for the DRBG,V the 128-bit counter, and C the number of outputs

since the last reseeding. All three are initialized to zero at reset. Then the DRBG reseeds

as follows.

1. V[15:0] = (V[15:0] + 1) mod 65536

2. Temp = AES (K,V)

3. V[15:0] = (V[15:0] + 1) mod 65536

4. V = CE[255:128] XOR AES(K,V)

5. K = CE[127:0] XOR Temp

6. C = 0.

The DRBG initially reseeds upon reset during BIST (see Section 2.5). It also requires

reseeding after generating a maximum of 512 128-bit outputs (65536 bits total).

However, in the design reseeding is given high priority and the DRBG will reseed much

more often than that. Intel’s simulations suggest that as long as the ES is healthy, the

generator will reseed within 22 128-bit outputs even under heavy load. Under light or

moderate load, it will reseed before every 128-bit output.

2.4.3 Generation

Once the AES engine has been reseeded, the DRBG is ready to generate random data. It

uses the counter mode CTR_DRBG construction as defined in [2], with AES-128 as the

block cipher. It first fills four 128-bit output buffers with data, and then generates

additional outputs as needed. The generation process is shown below.

V[15:0] = (V[15:0] + 1) modulo 65536

C = C+ 1

Output = AES(K,V)

If (update needed)

{

V[15:0] = (V[15:0] + 1) modulo 65536

Temp = AES(K,V)

V[15:0] = (V[15:0] + 1) modulo 65536

V = AES(K,V)

K = Temp

}

The DRBG will update rather than reseed if the output count C is less than 512, and the

conditions for reseeding are not met.

2.5 Built-In Self-Test (BIST)

Upon reset, the DRBG first performs a built-in self-test (BIST) to verify that it is

operating properly, and to initialize the DRBG. BIST is conducted in two phases. The

first phase tests the health check and DRBG logic. The second phase tests the entropy

source (ES) and initializes the DRBG.

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 12 OF 22

In Phase 0, the entropy source is disconnected and a linear feedback shift register (LFSR)

generates a deterministic sequence of bits to test the heath check and DRBG circuits. A

32-bit CRC is computed on the output of the DRBG and compared against a hardwired

expected value.

In Phase 1, the ES is reconnected and used to generate a sequence of 256 samples, each

sample consisting of 256 bits. The samples are used to condition the 256-bit entropy pool.

First, the lower half of the entropy pool is conditioned, until 128 healthy samples have

been processed. At this point the ES is considered to be swell and the lower half of the

conditioned entropy pool is marked as available. The upper half of the entropy pool is

then conditioned, and is marked as available as soon as one sample has been processed

while the ES is swell. Once both halves of the entropy pool are conditioned, the DRBG is

reseeded, replacing the initial all-zero values for the key K and counter C. Finally, the

DRBG generates four 128-bit samples, thereby filling the output buffer.

The RNG must pass both phases of BIST to be considered as working correctly. At the

end of a successful BIST, the DRBG is ready for normal operation. If BIST fails, the

RNG will produce no data. In this case, the instruction which reads from the RNG

(RDRAND) will return all zeros and clear the carry flag, indicating there is a problem

with the RNG, and its output must not be used.

2.6 Normal operation

In normal operation, the RNG operates autonomously. Upon reset, it performs a full

BIST, conditions the output from the ES, reseeds the DRBG, and then fills the four 128-

bit output buffers. Debug and test ports are disabled, and the only data exported by the

RNG are random bits generated by the DRBG and passed to the output buffer.

Each RDRAND call to the RNG returns 64 bits from the output buffer, which the RNG

refills as necessary. In addition, RDRAND uses the carry flag to indicate its status. This

flag is set to one by RDRAND if the RNG is behaving properly. If the RNG detects a

problem, such as a BIST failure, it will still service every request, but return all zeros for

output. Given such a zero return value, RDRAND will clear the carry flag after each

request. Users should check the carry flag after each RDRAND call to the RNG, and

should not make any assumptions about the randomness of output if the carry flag is

cleared.

Modeling and tests by Intel show that the RNG should be able to service all requests even

under a heavy load. At an 800 MHz clock rate, the RNG can deliver post-processed

random data at a sustained rate of 800 MBytes/sec. In particular, it should not be possible

for a malicious process to starve another process.

The RNG supports eight different operational modes. However, most of them are

designed to support testing and debugging, and are disabled on production parts. On

deployed systems, the RNG will be locked in normal mode. This report is only concerned

with the behavior of the system in normal mode.

In additional to the operational modes, the RNG supports a FIPS mode, which can be

enabled and disabled independently of the operational modes. FIPS mode sets additional

restrictions on how the RNG operates and can be configured, and is intended to facilitate

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 13 OF 22

FIPS-140 certification. In first generation parts, FIPS mode and the XOR circuit will be

disabled. Later parts will have FIPS mode enabled. CRI does not believe that these

differences in configuration materially impact the security of the RNG. (See Section 3.2.2

for details.)

3 Theoretical Analysis

3.1 Entropy source

The entropy source is the most critical component of the system, and therefore we

analyzed it in the most depth.

Our model of the entropy source roughly follows [9]. We model the state of the system as

the difference in charge between the two capacitors, plus the previous output bit. This

output bit allows us to model some causes of serial correlation. The model’s parameters

include:

 The distribution and amount of thermal noise affecting the output

 The amount of charge added or removed from the capacitors when outputting a 0

or 1, which we call the “right step size” and “left step size” respectively

 The distribution and amount of thermal noise affecting the step sizes

 The difference in charge on the capacitors when the system starts up.

The procedure to generate a new bit is as follows:

1. Let bias = (difference in charge on capacitors)

2. Let serialAdj = (if previous output bit was 1 then 1 else) × (serial coefficient)

3. If bias + serialAdj + (random thermal noise) > 0 then:

a. Next output bit = 1

b. Reduce (difference in charge on capacitors) by (left step size) + noise

4. Else:

a. Next output bit = 0

b. Increase (difference in charge on capacitors) by (right step size) + noise.

In an ideal system, we would have:

 Gaussian thermal noise with standard deviation 1 unit

 Steps in either direction are always 0.1 unit, with no noise

 Serial coefficient = 0

 Starting state with no charge on the capacitors.

However, we modeled non-ideal conditions as well, including:

 Non-Gaussian thermal noise

 Step sizes larger or smaller than 0.1 unit

 Steps which are different sizes in each direction

 Noise on the step size

 Positive or negative serial coefficient

 Starting with some charge on the capacitors.

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 14 OF 22

By quantizing the charge difference and limiting it to a few standard deviations, we

turned the above model into a Markov process suitable for mathematical analysis. In each

case, we used this process to estimate the long-term Shannon entropy, the min-entropy

over 32 bits, and local statistics such as autocorrelation and bias. We compared the results

to measurements of an Intel tool which simulates the entropy source, and found them in

agreement.

Figure 4: Effect of bias and serial coefficient on min-entropy, mean step size = 0.2

Figure 4 shows an interesting result of this modeling: if the serial coefficient is positive

or zero, then bias in the step size will decrease entropy. However, if it is negative, then

bias will break the pattern of oscillation, which may increase entropy. This graph shows

extreme cases. The real parts we analyzed had serial coefficients under 0.1.

3.2 System analysis

3.2.1 Failure modes

The entropy source is the most sensitive part in the RNG, and also the most difficult to

test. Hence, we will first consider its possible failure modes. Failure modes considered

include:

 The ES always shows single-bit bias, serial correlation and other small deviations

from perfect randomness. If these biases are severe, they may reduce the entropy

rate of the ES below acceptable levels.

 The ES might take a long time to warm up, and during this time could output

mostly 0s or mostly 1s until it settles on the metastable region.

 The ES might become “stuck”, always outputting 0 or always outputting 1.

 The ES might oscillate between 0 and 1, or in some other short pattern.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

En
tr

o
p

y
ra

te

Ratio of left / right step size

Serial -1.0

Serial -0.5

Serial -0.2

Serial -0.1

No serial

Serial +0.1

Serial +0.2

Serial +0.5

Serial +1.0

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 15 OF 22

 The ES might be mostly stuck in one of the preceding patterns, but occasionally

deviate from it.

 The ES might be influenced by an external circuit (for example, a nearby bus or

the chip’s power supply) in a way that is predictable or exploitable by an attacker.

The RNG has a generous safety margin, so these failures will only impact security if they

are severe. Of the possible failures above, most should be detected reliably by the health

and swellness checks. The most complex issues involve brief externally-induced

transitory losses of entropy, but the combination over-collection of entropy and the

RNG’s use of cryptography should mitigate any such unexpected issues. Also, while such

failures can cause the design to behave briefly as a cryptographically-strong deterministic

RNG, this should not result in any loss of security.

3.2.2 Health checks

The goal of the health checks is to reject ES outputs with little actual entropy. Since

entropy is impossible to measure, instead the design is intended to catch single points of

failure in the ES such as the failure modes listed above. If they were run on direct ES

outputs, the health checks would do this quite well. In fact, no repeating pattern with a

period shorter than 12 bits can pass the health checks.

However, the health checks are performed after the optional XOR filter and

synchronization logic. The ratio of the frequencies between the self-clocking ES and the

synchronous region is not an exact integer, and will drift over time. Hence the number of

ES samples that are included in each sample crossing the clock boundary will vary.

For example, if the ES is “stuck at 1”, then the output of the XOR filter will toggle

between 0 and 1. The sampled output will oscillate in a more complicated pattern,

depending on how many ES outputs were accumulated in each sample. If the frequency

ratio is constant and near 3.3, then the sampled output fails health checks by a margin of

5 samples. If the frequency ratio varies slightly, or the ES is only mostly stuck at 1, then

the part may pass the health checks despite having little entropy. In our experiments,

many samples pass the health checks even if the ES is 96% stuck at 1. Such a failure

would go undetected, and would bring the system outside its design margins. Since

production parts cannot examine the ES’s raw output, software would not be able to

detect this failure either.

Still, after the XOR filter and clock domain crossing, the samples in this failure mode

have a Shannon entropy rate of nearly 0.4, with min-entropy only slightly lower. While

this is less than the design margin of 0.5, the system’s conservative initialization allows it

to come up securely with min-entropy rate of 0.004, two orders of magnitude less than

this failure allows.

The first generation of the RNG does not use the XOR filter. In this case, ES samples will

go directly through to the health checks. However, the output of the ES is still under-

sampled when crossing the clock boundary. That is, some of its output bits will be used,

and others dropped. But the health checks are more effective without the XOR filter.

Without the XOR filter, a failure such as “mostly stuck at 1” will certainly be caught.

Instead, the ES would need to oscillate at a slightly inconsistent rate to have an

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 16 OF 22

undetected failure. This failure mode seems less likely, though it might happen if the

feedback circuit’s step size were somehow far too large. However, without the XOR

filter, the health checks will not be forgiving of bias in the entropy source. Any part

which is biased by more than 57% ones to 43% zeros (or vice versa) is likely to fail

BIST.

These concerns can be resolved by having the health checks operate on all the ES output

bits directly. In future versions of the RNG, the ES output will be deserialized, and then

sampled in parallel into the synchronous region. This newer logic will therefore provide

most or all of the raw ES output to the health checks, and avoid this issue.

3.2.3 Swellness check

The swellness check serves three main purposes.

 It causes the first 129 healthy samples from the ES– more than 32 kilobits – to be

conditioned into the DRBG’s key during BIST. Thus, it will saturate its 128-bit

entropy pool even if those samples have a min-entropy rate as low as 0.004.

 It prevents the RNG from passing BIST unless at least 129 of the first 256

samples are healthy.

 It prevents the system from remaining mostly unhealthy for too long.

Swellness also protects the reseed logic, but only in the long term. Reseeds happen every

few blocks, but if users are not consuming much entropy, then the time between reseeds

may be long. During this time, the ES’s capacitors might discharge, and when the ES is

turned back on, it might generate poor data. If most of this data fails the health checks,

then the swellness check will eventually fail, so that more healthy samples are required.

Once this occurs, the ES will need to warm up enough to produce mostly healthy

samples. In this (entirely hypothetical) case, some reseeds will be stronger than others.

Intel has told us that worst case simulations suggest that only the first 256 bits could be

affected, and the warm-up effect cannot be detected in real silicon.

Reseeding preserves the old seed’s entropy. Therefore, if the initial seed is strong, poor

reseeds will not weaken it. The DRBG reseeds much more often than NIST SP 800-90A

requires, and some weak reseeds are not a concern so long as strong ones happen

occasionally.

3.2.4 Conditioning data for seeding/reseeding the DRBG

Entropy conditioning is done via two independent AES-CBC-MAC chains, one for the

generator’s key and one for its counter. AES-CBC-MAC should be suitable as an entropy

extractor, and allows reuse of the module’s AES hardware. Importantly, the conditioner

accumulates at least 129 healthy samples (33,024 bits) for the DRBG’s key during BIST,

so even if the entropy rate is low, the generator will be in a secure state before it returns

any data. We see no problems with this conditioner.

Under moderate load, the generator will reseed before each 128-bit output, so that the

output is information-theoretically random if the entropy rate of healthy samples is at

least 0.25. Under heavy load, if the DRBG’s state were somehow compromised, the

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 17 OF 22

conditioning logic would restore it to a strong state if the ES achieves its designed

entropy rate of at least 0.5.

3.2.5 Post-processing the data with the DRBG

The DRBG is based on AES in counter mode, per the NIST SP 800-90A

recommendations. It is a theoretically sound, conservative design. Under moderate load,

its output should be information-theoretically random. Under heavy load, it should

provide security equivalent to 128-bit AES, even against an attacker who can see some of

its outputs and, after a good reseed, force the ES to output nonrandom, known values.

3.2.6 Clock gating

The RNG supports clock gating to reduce power consumption. If no application requests

entropy for a short time, the RNG will freeze its clock and stop the ES. An area of

concern with this approach is that the charge on capacitors may dissipate when the ES is

not operating, which might affect the quality of the entropy output by the ES when

restarted. As stated in Section 3.2.3, simulations and tests by Intel suggest that this is not

an issue, as the ES resumes normal operation quickly. In addition, there should be

sufficient entropy in the DRBG from the initial seeding during BIST.

4 Empirical Tests

We did not have access to Ivy Bridge parts, so Intel provided us with testing data from

pre-production chips. These chips allow access to the raw ES output, a capability which

is disabled in production chips. Even so, in normal operation some data is lost crossing

the clock boundary. For easier analysis, Intel performed extensive testing with the ES

clock synchronized to the system clock, so that all the output could be collected. We also

received data from test chips with special hardware to collect the entire ES output, and

from chips running in the normal operational mode with the XOR filter and clock-

domain-crossing logic in place.

We analyzed all the data files that Intel provided, but in this report we will focus on the

data collected with the ES clock synchronized, because this data was collected from a

wide variety of chips and shows the most interesting features.

4.1 Basic statistical tests

We ran a number of statistical tests on the entropy source data that Intel provided us. For

the most basic test, we measured the bias and serial correlations of the data. These

measurements are summarized in Figure 5.

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 18 OF 22

Figure 5: Bias and autocorrelation in the data

Figure 5 shows the bias and serial correlation in the data we received. Each diamond

represents data from a single chip. Serial correlations in this data are relatively small, at

most a few percent. Single-bit bias is a bigger problem, with 12% typical and an outlier at

almost 25%.

The data had serial correlations at higher offsets as well. A small anti-correlation (1-2%)

is expected due to the negative feedback circuit. Instead, we saw varying positive and

negative autocorrelations at longer offsets, all on the order of 1%. These autocorrelations

are symptomatic of a faint “ringing” within the system. In order to investigate this ringing

behavior, we looked at the Fourier transforms of the data.

Figure 6: Fourier transform of data from one part, showing ringing

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

-30% -25% -20% -15% -10% -5% 0% 5% 10% 15%

A
u

to
co

rr
e

la
ti

o
n

 a
t

o
ff

se
t

1

Bias = Pr(1) - Pr(0)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0 1/12 1/6 1/4 1/3 5/12 1/2

A
ve

ra
ge

 m
ag

n
it

u
d

e

Frequency

|DC| = 1.8%
from bias

|F(1/2)| = 2.2% from
serial correlation

|F(0.32)| = 1.1%
strongest tone

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 19 OF 22

Figure 6 shows the Fourier transform of one particular data file. This file shows a small

bias, an offset-1 autocorrelation, and a noticeable tone near 1/3. This tone is symptomatic

of “ringing” behavior with period slightly over 3 bits.

Compared to the other parts, this one shows a smaller bias and a stronger tone than most.

It is otherwise representative. Most parts show a flat spectrum with a few faint tones, plus

a single-bit bias and a small serial correlation.

4.2 Entropy, bit prediction, and Markov modeling

We constructed Markov models of each sample file that Intel provided. The state of our

model comprised the last 12 bits of output; with a larger state, errors crept in due to

having too few samples in each state. From this model, we used the Markov-Rényi [11]

algorithm to estimate the worst-case min-entropy. This algorithm is much more

pessimistic than sampling the min-entropy directly. In particular, it assumes that an

adversary can wait until the system is in a state which produces low entropy, which is not

actually possible.

Figure 7: Entropy measurements on 45 parts

Figure 7 summarizes the results of these entropy measurements. The horizontal axis is the

part which was sampled, sorted by the mean of the entropy measurements. The vertical

axis is the entropy per bit according to the indicated metrics.

The top line shows the Shannon entropy, computed over the bytes of the entropy source’s

output. This measurement shows how much entropy the entropy source’s outputs have on

average. These results are clearly very good.

The second line shows the sampled min-entropy, measured on 13-bit samples (our

Markov model’s state, plus its output). This is a relatively accurate model of the difficulty

of guessing the output of the generator.

0.50

0.60

0.70

0.80

0.90

1.00

Es
ti

m
at

e
d

 e
n

tr
o

p
y

p
e

r
b

it

Sampled part

Shannon

Sample Min

Markov-Rényi Min

Weakest

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 20 OF 22

The third line shows the Markov-Rényi min-entropy, modeling the next bit of output

using the previous 12 bits. This is a more conservative model of the difficulty of guessing

the output of the generator.

The lowest line shows the entropy of the weakest states of the Markov model. This line is

much lower than the Markov-Rényi line because the generator does not stay in these

weak states for long. Therefore, they do not pose a threat to the security of the RNG.

Three major effects are visible in this chart.

 Some of the parts generate lower-quality entropy due to correlation and bias. This

has a much more dramatic effect on the min-entropy than on the Shannon entropy.

Still, even the most pessimistic estimates of the worst parts are higher than the

50% threshold discussed in Section 2.4.1.

 The data for these CPUs was collected by placing them in a testing machine,

rather than by issuing debugging commands from the CPU itself. As a result,

some runs (in particular, the spike near the right side of the plot) show artifacts

where the testing machine began reading before the ES turned on. After

discussing these artifacts with Intel, we believe that they cannot happen during

operation.

 The ringing behavior of some parts means that after a certain 2- or 3-bit pattern

has occurred, it is slightly more likely to occur again. This ringing behavior is

faint, but even so it can reduce the Markov-Rényi entropy estimate by up to 10%.

4.3 Charge tracking

We attempted to track the charge on the capacitors, in part to predict the output of the

circuit and in part to verify that our model was correct. We did not expect our predictions

to be very accurate, because even if the system ideally matched our model, it would have

high entropy. But we did expect the estimated charge on the capacitors to correlate to the

output.

We saw the expected correlation (and lack of predictability) in the data collected from a

running Ivy Bridge CPU, but not in the data collected from an external tester. We suspect

that the link between the CPU and the tester is not fast enough to transmit every sample,

thwarting our attempts to track the capacitor charge on these parts.

4.4 Randomness tests

We tested the final, post-processed outputs of the RNG with the NIST SP 800-22

statistical test suite [12] in order to make sure that there are no glaring flaws in the

generator. As expected, the outputs easily passed the entire test suite.

5 Conclusions

Overall, the Ivy Bridge RNG is a robust design with a large margin of safety that ensures

good random data is generated even if the ES is not operating as well as predicted.

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 21 OF 22

The ES is an interesting design based on the random resolution of a circuit designed to

seek out its metastable state. Intel has modeled and tested the ES extensively and believes

that within a wide range of conditions, including typical PVT variations, the ES generates

at least 0.5 bits of entropy per sample. Our modeling and testing agree with this

assessment.

The health and swellness tests are generally well designed and should identify badly

broken entropy sources. They are most effective when performed directly on ES output,

and the optional XOR filtering and clock boundary crossing logic weakens them.

However, the large number of ES samples mixed into the DRBG AES key during BIST

and reseeding should compensate for an ES which is generating data with even very low

entropy.

The DRBG construction is sound. We found no issues with the entropy conditioning,

reseeding, and random data generation logic.

Because the Ivy Bridge RNG is implemented as an instruction in the CPU, it is much

simpler to use than other hardware-based RNGs and avoids the need for additional

software layers that could introduce bugs. Applications do need to perform some simple

checks, however, notably testing the carry flag to detect failures and testing to ensure safe

operation if run on a CPU without an integrated RNG. In addition, developers should be

aware that the RNG instruction can be virtualized, and could be intercepted to deliver

nonrandom data to applications. Of course, a malicious hypervisor can ruin applications’

security in numerous other, simpler ways.

In conclusion, we believe the Ivy Bridge RNG is well designed, with a wide margin of

safety, and the output is appropriate to use directly for cryptographic keys, secret nonces,

and other sensitive values. However, the most prudent approach is always to combine any

other available entropy sources to avoid having a single point of failure. For OS

implementations that maintain an entropy pool, we recommend the frequent

incorporation of RNG outputs as an additional input into the OS entropy pool. The

exceptional performance of the Intel design also enables direct mixing of data from the

Ivy Bridge RNG outputs with output delivered from other RNGs. In all cases, users

should check the carry flag after each call to the RNG to verify that it is working properly

and the random data received is valid.

ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RANDOM NUMBER GENERATOR

MARCH 12, 2012 CRYPTOGRAPHY RESEARCH, INC. PAGE 22 OF 22

6 Bibliography

[1] C. E. Shannon, "A Mathematical Theory of Communication," Bell System Technical

Journal, vol. 27, pp. 379–423, 623-656, 1948.

[2] E. Barker and J. Kelsey, Recommendation for Random Number Generation Using

Deterministic Random Bit Generators, NIST Special Publication 800-90A, January

2012.

[3] B. Schneier, Security Pitfalls in Cryptography, Counterpane Systems, 1998.

[4] "DSA-1571-1- openssl -- predictable random number generator," Debian, 13 May

2008. [Online]. Available: http://www.debian.org/security/2008/dsa-1571.

[Accessed 1 February 2012].

[5] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung and C. Wachter,

"Ron was wrong, Whit is right," IACR eprint archive, vol. 064, 2012.

[6] D. Bleichenbacher, On the generation of one-time keys in DL signature schemes,

IEEE P1363 Working Group Meeting, November 2000.

[7] D. J. Johnston, "Mircoarchitecture Specification (MAS) for PP-DRNG," Intel

Corporation (unpublished), V1.4, 2009.

[8] C. E. Dike, "3 Gbps Binary RNG Entropy Source," Intel Corporation (unpublished),

2011.

[9] C. E. Dike and S. Gueron, "Digital Symmetric Random Number Generator

Mathematics," Intel Corporation (unpublished), 2009.

[10] M. Dworkin, "Recommendation for Block Cipher Modes of Operation: The CCM

Mode for Authentication and Confidentiality," NIST Special Publication 800-38C,

May 2004.

[11] Z. Rached, F. Alajaji and L. Campbell, "Rényi's Entropy Rate For Discrete Markov

Sources," 1999.

[12] NIST, "NIST Special Publication 800-22rev1a," 11 August 2010. [Online].

Available: http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html.

[Accessed 2 February 2012].

