

DPA Resistant AES Core

High-security, high-performance AES primitive designed with built-in side-channel resistance for cryptographic functions.

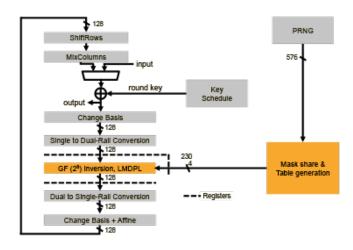
Overview

The DPA Resistant AES Core is a high-security AES primitive that offers chipmakers an easy-to-integrate security solution with built-in side-channel resistance for cryptographic functions across a wide range of connected devices.

This high-performance core offers both encryption and decryption functions with key size options of 128- and 256-bits.

It provides robust, flexible side-channel resistance for cryptographic functions validated to different security and performance levels based on product requirements. The high-performance core provides chipmakers with a seamless solution that enables them to devote resources to differentiating features and reduce implementation time.

Entropy In Key In State Machine Machine State Machine Data In Interface Logic LMDPL AES Engine Data Out


Highlights

- High-performance and DPA resistance-proven AES cryptographic core
- Provides a higher level of protection than standard AES cores
- Extensively validated against sidechannel attacks of first-and secondorder up to 10 million traces
- Highly flexible for integration with standard cipher modes such as CBC, ECB, etc.
- Easy-to-integrate into SoCs and FPGAs
- Optimized and validated for different performance, size, and security levels
- Countermeasures are portable to any FPGA and ASIC technologies
- Rambus Cryptography
 Research discovered DPA and
 developed a broad portfolio of
 countermeasures to protect
 against this vulnerability

Applications

- Aerospace and Defense
- Content Protection
- Mobile
- Storage
- Secure Communications
- Automotive
- Payments/Point-of-Sale
- Internet of Things

Architecture Of The AES Implementation

Features

- Core implements a very high-security AES primitive
- Supports AES-128 and AES-256 encrypt and decrypt
- Simple control/status interface
- Implements DPA countermeasures such as LMDPL (LUT-Masked Dual-rail with Pre-charge Logic) gate-level masking and other schemes
- · No routing constraints necessary for LMDPL gate-level masking
- Delivers highest level of security with side-channel resistance prioritized

Core	AES-128			AES-256		
	cycles	clk/B	MB/Sec*	cycles	clk/B	MB/Sec*
LMDPL-16	25	1.56	320.0	33	2.06	242.4
LMDPL-4	85	5.31	94.1	117	7.31	68.4
LMDPL-1	329	20.56	24.3	457	28.56	17.5

Deliverables

Configurable DPA-Resistant Core

Verilog RTL source

Synthesis Inputs

• SDC constraint file suitable for FPGA or ASIC synthesis

Full Documentation

• Usage guide

Functional Testbench

NIST-compliant test vectors

Development and Test Environment (Optional)

- DPA Workstation™ Testing Platform
- Implementation on reference FPGA board
- · Integrated testing framework