
2/29/2012

1

Session ID:

Session Classification:

Benjamin Jun
VP & CTO

Cryptography Research Inc., a division of Rambus

Minding the App Store -
Protecting Software and
Device Features

ASEC-202

Intermediate

The “app store” concept

1. User device has latent capabilities

 Hardware platform
 Pre-installed digital assets, configurations
 Downloaded data

2. Pay $, capability activated

2

“Revenue for Major Mobile App
Stores to Rise 77.7% in 2011”

- IHS iSuppli 5/2011

2/29/2012

2

What are we protecting?

 Downstream (in-app) purchase
 Purchase, then download
 Download, then purchase

3

In-app billing, developer.android.com Word Lens upgrade

What are we protecting?

 Downstream (in-app) purchase

 Subscription revenue

4

2/29/2012

3

What are we protecting?

 Downstream (in-app) purchase

 Subscription revenue

 Product differentiation

5

What are we protecting?

 Downstream (in-app) purchase

 Subscription revenue

 Product differentiation

 Device subsidies

6

“AT&T’s subsidy rate has risen 178% since 2008, to $172 —
the fastest rate of increase in the industry... If AT&T is
feeling pressured… it can choose to subsidize more heavily,
hurting its margins but maintaining market share.”

— AT&T’s flexible device subsidies could be a nail in Sprint’s coffin, M. Maisto,
Connected Planet, 7/6/2011

AT&T Website, Feb 2012

2/29/2012

4

What are we protecting?

 Downstream (in-app) purchase

 Subscription revenue

 Product differentiation

 Device subsidies

 Trusted user environment

7

Pacemaker hack (Halperin et al)Address book usage

When features are valuable, attacks follow

 Attacker motivations
 Gain functionality / access
 Obtain control of locked device
 Sell an interoperable component

8

 This talk…
 Defining capabilities
 Methods for policy enforcement
 Security building blocks

ECU re-flash

2/29/2012

5

Describing Capabilities

(who, what, where, when)

9

Know your rights (1/2)

 Define controlled capabilities across all lifecycle phases

 List should map to business rules
 Completeness is important
 Also important: understanding non-controlled capabilities

10

Examples:

 Permit execution of signed code

 Ability to run unsigned code

 Access to digital assets

 Developer / debug port

 Performance / quality adjustment

 Access to online resource

 Use of peripheral ports

 Use of on-chip component

 # of content streams

 Access to storage resource

2/29/2012

6

Know your rights (2/2)

 Identify control points

 UI actions associated with functionality
 Capabilities enabled by software,

hardware, server connectivity, local
data, OS, etc.

 Recognize special constraints

 Developer, manufacturing, debug, field
repair, …

 Activation and de-activation cycles

11

Lifecycle phases

Development

Manufacturing

Identity provisioning

Regionalization

Normal operation

End of support

Diagnostic / field return

What’s in a name?

 User/device IDs…
 “Fixed” numbers (system/OS, MAC)
 Assigned identifiers (registry key/value, cookie)

 Some identifiers will change over time
 Groups: Sales region, service contract ID, developer

device pool
 May be fluid: Geographic region, field return status

12

[[UIDevice currentDevice] uniqueidentifier];

Retrieve device identifier (iOS)

http://stackoverflow.com/questions/5809995/how-to-identify-iphone-ipad-users-itunes-account-information

2/29/2012

7

Choose your IDs wisely (or, choose your legacy issue)

 Who owns the identity?

 What happens if ID changes or user migrates?

 Sometimes a single identity value works best

 Sometimes matching M-of-N identities is better

13

ID circa 1997
iTunes circa 2001

Identities and keys

 Device, user, and group keys

 Certificates

14

Android.security.KeyChain class

2/29/2012

8

Key management

 Choosing symmetric vs. asymmetric keys…

 Assignment vs. in-field enrollment

 Permission logic vs. encryption-based access control

 If keys applied properly, risk shifts to key management

 Before creating or importing a key

 Who owns the key?

 What requirements does (should) the key owner have?

 Who may touch the key and how is access controlled?

 How is the key assigned/provisioned?

 What are the tamper resistance needs?

15

Communicating rights (1/2)

 “Capability manifest” conveys client privileges

 List specific privileges / capabilities
 Identity ID, group bindings for recipient
 May include contingencies: prerequisite authorization, local

purchase log, authorized dates, etc.

16

2/29/2012

9

Communicating rights (2/2)

 File format: structured (bitmap) or freeform (XML)

 Degree of parsing intelligence
 Reverse compatibility requirements
 Handling inputs from multiple sources (sales channels)

 Digitally signed, updated with in-field purchase

 May include encrypted rights keys

 Message stored locally

 …ideally with minimal storage security requirements
 Must address offline synchronization, revocation, updates, etc.

17

Policy Enforcement

18

2/29/2012

10

Policy engine

 Ideally run on each access / invocation / boot

 Interpret, authenticate, and apply policy
 Adjust software capabilities
 Decrypt protected content

19

Approach #1: “Active whitelist”

 Positive permission control

 Rule language describes enabled set of features
 Most intuitive: Rules & business logic closely aligned

 Authorization checks embedded within application

 Rights logic controls access to asset
 Gating code is run at various points within application

 Security challenges

 Security logic may not be sufficiently isolated from other apps
 Does little to prevent copy of modified executable/content
 Complex platforms may provide several ways to bypass checks

20

 Positive permission control

 Activate features listed in the capability manifest
 Most intuitive approach: Rules & business logic closely aligned

2/29/2012

11

Approach #2: “Behaviorally blacklist”

 Uses a (relatively) independent monitor

 Ability to observe, compare against negative threshold criteria
 Adequate control over device capabilities

21

 Negative permission control

 Detect when system is in policy violation, react accordingly
 In many platforms, audit + react is less difficult to implement,

offers more coverage
 Foundation for reactive security

Approach #2: “Behaviorally blacklist”

 Secure monitor provides secondary control

 Augments positive controls

22

 Think negative!

 Negative control logic offers more points of enforcement
 Design requires solid knowledge of system interactions, lifecycle

2/29/2012

12

Building Blocks for
Authorization Management

23

Off the shelf solutions

 Threats well understood

 Encrypted pay TV delivery is 30 years old
 …yet implementation robustness and susceptibility vary

 Commercial, open source, and consortium offerings

 Mostly for digital content, software, streaming data
 Limited offerings for platform control, offline authorization, and

high $ value protection
 Security threats require solutions to get close to platform, OS,

hardware

Images provided to refer to example systems only

2/29/2012

13

Protected data containers (1/2)

 Package for secured installation

25

 Read-only data, authenticated by signature, possibly
encrypted

 Code, configuration, installation settings
 Rights metadata
 Multimedia container formats

 Read-write data, secured by platform or policy engine

 Private application storage
 Usage / purchase commitment history

Protected data containers (2/2)

 Leverage crypto

 Digital signing for authenticity, encryption for access control
 Example: TPM provides attestation, seal/unseal operations

 “Roll-your-own” challenge: filesystem + databases

 Easiest if policy engine (and not much else) is root
 Ideally, assets can be re-authenticated on every reboot
 Configuration manifest database
 Leverage windows registry, linux /etc/, Mac OS property list

26

2/29/2012

14

Reasons to sign code

1. Code authentication: accept code from trusted
sources

2. Code privileges: privilege metadata specifies
platform, process capabilities

3. Code review: code reviewed by an authority
who attests to its safety

4. Code responsibility: code can be traced to a
registered entity

5. Code revocation: code (or signers) that are
discovered to be malicious can be revoked

27

Important for
less controlled
environments

Important for
closed
platforms

Important for
supervised app
store

Communication protocols

 Server – client messages

 Authorization
 Keep-alive / date update
 Upstream report and audit

 Connection types

 Live socket
 Live-but-intermittent
 Store-and-forward, offline

 Message generation infrastructure

 Container creation and signing capabilities
 Links with billing, manufacturing, and audit systems

28

android.drm framework

2/29/2012

15

Hardening the policy engine

 Your policy engine must do several things right

 Carefully consider single points of failure

29

Negative enforcement

Implementation strength is crucial

30

Policy engine property Platform tools & capabilities

Correctness of engine
execution

Authenticated bootloader
Process separation
State management on sleep/resume
Glitch protection

Preserve secrets (opacity) Process separation
Side channel resistance
Hardware key management

Correctness of identity
information

Public keyring management
Native platform access, hardware IDs

Application control OS privilege
Sandboxing

Examine state of system OS privilege
Process monitoring

Hardware control Native code interfaces, hardware security
partitions

2/29/2012

16

Leverage existing hardware and OS protection

 Principle of least privilege (security kernel , app)

 OS

 Identity management
 Process partitioning, protected storage
 I/O infrastructure

 Hardware resources

 Secured key oracles (TPM, payment API)
 Partitioned cores (Intel ME)
 Privilege management (ARM TrustZone)
 Security features in application specific cores
 Hardware key management

31

Conclusions

32

2/29/2012

17

Protect your application platform

 Map the business requirements
 Configuration manifest: identities, capability list
 Understand how platform protections (OS / native

code) map to control points
 Mind system lifecycle

 Implementation
 Consider positive and negative controls
 Use existing building blocks in system, device, OS

 Client tamper resistance is important!

33

Apply Slide

 In the next few months, you should:
 Generate a feature management policy for all phases

of product lifecycle
 Evaluate datastructures for personality management

and rights conveyance

 Within six months, you should:
 Become familiar with general DRM offerings
 Understand platform security building blocks for code

authentication, execution control, and configuration
management

 Understand your tamper resistance requirements

34

2/29/2012

18

35

Contact Information

Benjamin Jun

Cryptography Research, Inc.
ben@cryptography.com
415.397.0123

www.cryptography.com

