
2/29/2012

1

Session ID:

Session Classification:

Benjamin Jun
VP & CTO

Cryptography Research Inc., a division of Rambus

Minding the App Store -
Protecting Software and
Device Features

ASEC-202

Intermediate

The “app store” concept

1. User device has latent capabilities

 Hardware platform
 Pre-installed digital assets, configurations
 Downloaded data

2. Pay $, capability activated

2

“Revenue for Major Mobile App
Stores to Rise 77.7% in 2011”

- IHS iSuppli 5/2011

2/29/2012

2

What are we protecting?

 Downstream (in-app) purchase
 Purchase, then download
 Download, then purchase

3

In-app billing, developer.android.com Word Lens upgrade

What are we protecting?

 Downstream (in-app) purchase

 Subscription revenue

4

2/29/2012

3

What are we protecting?

 Downstream (in-app) purchase

 Subscription revenue

 Product differentiation

5

What are we protecting?

 Downstream (in-app) purchase

 Subscription revenue

 Product differentiation

 Device subsidies

6

“AT&T’s subsidy rate has risen 178% since 2008, to $172 —
the fastest rate of increase in the industry... If AT&T is
feeling pressured… it can choose to subsidize more heavily,
hurting its margins but maintaining market share.”

— AT&T’s flexible device subsidies could be a nail in Sprint’s coffin, M. Maisto,
Connected Planet, 7/6/2011

AT&T Website, Feb 2012

2/29/2012

4

What are we protecting?

 Downstream (in-app) purchase

 Subscription revenue

 Product differentiation

 Device subsidies

 Trusted user environment

7

Pacemaker hack (Halperin et al)Address book usage

When features are valuable, attacks follow

 Attacker motivations
 Gain functionality / access
 Obtain control of locked device
 Sell an interoperable component

8

 This talk…
 Defining capabilities
 Methods for policy enforcement
 Security building blocks

ECU re-flash

2/29/2012

5

Describing Capabilities

(who, what, where, when)

9

Know your rights (1/2)

 Define controlled capabilities across all lifecycle phases

 List should map to business rules
 Completeness is important
 Also important: understanding non-controlled capabilities

10

Examples:

 Permit execution of signed code

 Ability to run unsigned code

 Access to digital assets

 Developer / debug port

 Performance / quality adjustment

 Access to online resource

 Use of peripheral ports

 Use of on-chip component

 # of content streams

 Access to storage resource

2/29/2012

6

Know your rights (2/2)

 Identify control points

 UI actions associated with functionality
 Capabilities enabled by software,

hardware, server connectivity, local
data, OS, etc.

 Recognize special constraints

 Developer, manufacturing, debug, field
repair, …

 Activation and de-activation cycles

11

Lifecycle phases

Development

Manufacturing

Identity provisioning

Regionalization

Normal operation

End of support

Diagnostic / field return

What’s in a name?

 User/device IDs…
 “Fixed” numbers (system/OS, MAC)
 Assigned identifiers (registry key/value, cookie)

 Some identifiers will change over time
 Groups: Sales region, service contract ID, developer

device pool
 May be fluid: Geographic region, field return status

12

[[UIDevice currentDevice] uniqueidentifier];

Retrieve device identifier (iOS)

http://stackoverflow.com/questions/5809995/how-to-identify-iphone-ipad-users-itunes-account-information

2/29/2012

7

Choose your IDs wisely (or, choose your legacy issue)

 Who owns the identity?

 What happens if ID changes or user migrates?

 Sometimes a single identity value works best

 Sometimes matching M-of-N identities is better

13

ID circa 1997
iTunes circa 2001

Identities and keys

 Device, user, and group keys

 Certificates

14

Android.security.KeyChain class

2/29/2012

8

Key management

 Choosing symmetric vs. asymmetric keys…

 Assignment vs. in-field enrollment

 Permission logic vs. encryption-based access control

 If keys applied properly, risk shifts to key management

 Before creating or importing a key

 Who owns the key?

 What requirements does (should) the key owner have?

 Who may touch the key and how is access controlled?

 How is the key assigned/provisioned?

 What are the tamper resistance needs?

15

Communicating rights (1/2)

 “Capability manifest” conveys client privileges

 List specific privileges / capabilities
 Identity ID, group bindings for recipient
 May include contingencies: prerequisite authorization, local

purchase log, authorized dates, etc.

16

2/29/2012

9

Communicating rights (2/2)

 File format: structured (bitmap) or freeform (XML)

 Degree of parsing intelligence
 Reverse compatibility requirements
 Handling inputs from multiple sources (sales channels)

 Digitally signed, updated with in-field purchase

 May include encrypted rights keys

 Message stored locally

 …ideally with minimal storage security requirements
 Must address offline synchronization, revocation, updates, etc.

17

Policy Enforcement

18

2/29/2012

10

Policy engine

 Ideally run on each access / invocation / boot

 Interpret, authenticate, and apply policy
 Adjust software capabilities
 Decrypt protected content

19

Approach #1: “Active whitelist”

 Positive permission control

 Rule language describes enabled set of features
 Most intuitive: Rules & business logic closely aligned

 Authorization checks embedded within application

 Rights logic controls access to asset
 Gating code is run at various points within application

 Security challenges

 Security logic may not be sufficiently isolated from other apps
 Does little to prevent copy of modified executable/content
 Complex platforms may provide several ways to bypass checks

20

 Positive permission control

 Activate features listed in the capability manifest
 Most intuitive approach: Rules & business logic closely aligned

2/29/2012

11

Approach #2: “Behaviorally blacklist”

 Uses a (relatively) independent monitor

 Ability to observe, compare against negative threshold criteria
 Adequate control over device capabilities

21

 Negative permission control

 Detect when system is in policy violation, react accordingly
 In many platforms, audit + react is less difficult to implement,

offers more coverage
 Foundation for reactive security

Approach #2: “Behaviorally blacklist”

 Secure monitor provides secondary control

 Augments positive controls

22

 Think negative!

 Negative control logic offers more points of enforcement
 Design requires solid knowledge of system interactions, lifecycle

2/29/2012

12

Building Blocks for
Authorization Management

23

Off the shelf solutions

 Threats well understood

 Encrypted pay TV delivery is 30 years old
 …yet implementation robustness and susceptibility vary

 Commercial, open source, and consortium offerings

 Mostly for digital content, software, streaming data
 Limited offerings for platform control, offline authorization, and

high $ value protection
 Security threats require solutions to get close to platform, OS,

hardware

Images provided to refer to example systems only

2/29/2012

13

Protected data containers (1/2)

 Package for secured installation

25

 Read-only data, authenticated by signature, possibly
encrypted

 Code, configuration, installation settings
 Rights metadata
 Multimedia container formats

 Read-write data, secured by platform or policy engine

 Private application storage
 Usage / purchase commitment history

Protected data containers (2/2)

 Leverage crypto

 Digital signing for authenticity, encryption for access control
 Example: TPM provides attestation, seal/unseal operations

 “Roll-your-own” challenge: filesystem + databases

 Easiest if policy engine (and not much else) is root
 Ideally, assets can be re-authenticated on every reboot
 Configuration manifest database
 Leverage windows registry, linux /etc/, Mac OS property list

26

2/29/2012

14

Reasons to sign code

1. Code authentication: accept code from trusted
sources

2. Code privileges: privilege metadata specifies
platform, process capabilities

3. Code review: code reviewed by an authority
who attests to its safety

4. Code responsibility: code can be traced to a
registered entity

5. Code revocation: code (or signers) that are
discovered to be malicious can be revoked

27

Important for
less controlled
environments

Important for
closed
platforms

Important for
supervised app
store

Communication protocols

 Server – client messages

 Authorization
 Keep-alive / date update
 Upstream report and audit

 Connection types

 Live socket
 Live-but-intermittent
 Store-and-forward, offline

 Message generation infrastructure

 Container creation and signing capabilities
 Links with billing, manufacturing, and audit systems

28

android.drm framework

2/29/2012

15

Hardening the policy engine

 Your policy engine must do several things right

 Carefully consider single points of failure

29

Negative enforcement

Implementation strength is crucial

30

Policy engine property Platform tools & capabilities

Correctness of engine
execution

Authenticated bootloader
Process separation
State management on sleep/resume
Glitch protection

Preserve secrets (opacity) Process separation
Side channel resistance
Hardware key management

Correctness of identity
information

Public keyring management
Native platform access, hardware IDs

Application control OS privilege
Sandboxing

Examine state of system OS privilege
Process monitoring

Hardware control Native code interfaces, hardware security
partitions

2/29/2012

16

Leverage existing hardware and OS protection

 Principle of least privilege (security kernel , app)

 OS

 Identity management
 Process partitioning, protected storage
 I/O infrastructure

 Hardware resources

 Secured key oracles (TPM, payment API)
 Partitioned cores (Intel ME)
 Privilege management (ARM TrustZone)
 Security features in application specific cores
 Hardware key management

31

Conclusions

32

2/29/2012

17

Protect your application platform

 Map the business requirements
 Configuration manifest: identities, capability list
 Understand how platform protections (OS / native

code) map to control points
 Mind system lifecycle

 Implementation
 Consider positive and negative controls
 Use existing building blocks in system, device, OS

 Client tamper resistance is important!

33

Apply Slide

 In the next few months, you should:
 Generate a feature management policy for all phases

of product lifecycle
 Evaluate datastructures for personality management

and rights conveyance

 Within six months, you should:
 Become familiar with general DRM offerings
 Understand platform security building blocks for code

authentication, execution control, and configuration
management

 Understand your tamper resistance requirements

34

2/29/2012

18

35

Contact Information

Benjamin Jun

Cryptography Research, Inc.
ben@cryptography.com
415.397.0123

www.cryptography.com

