
A First-Order DPA Attack Against AES in
Counter Mode with Unknown Initial Counter

Josh Jaffe

Cryptography Research, Inc.
575 Market Street, suite 2150, San Francisco, CA 94105, USA.

josh@cryptography.com

Abstract. Previous first-order differential power analysis (DPA) at-
tacks have depended on knowledge of the target algorithm’s input or
output. This paper describes a first-order DPA attack against AES in
counter mode, in which the initial counter and output values are all
unknown.

Keywords: power analysis, SPA, DPA, HO-DPA, AES, counter mode.

1 Introduction

Previous first-order differential power analysis (DPA) attacks have depended on
knowledge of the target algorithm’s input or output [1][2]. This paper describes
a first-order DPA attack against the Advanced Encryption Standard (AES) [3]
in counter mode, in which the initial counter, input values, and output values
are all unknown.

The attack proceeds as follows. Suppose the input data to an algorithm is
unknown, but can be expressed as single secret constant summed with known,
variable data. The known, variable part of the data is used to mount a DPA
attack, and the secret constant is treated as part of the key to be recovered. The
“key” recovered by the DPA attack is then a function of the actual key and the
secret constant. The known input values are then combined with the recovered
“key” to compute the actual intermediate values produced by the algorithm.
The recovered intermediates are then used to carry the attack forward into later
rounds, enabling additional DPA attacks to recover the real key.

The attack also addresses the challenges to DPA presented by block ciphers
used in counter mode [4]. DPA attacks target secrets when they are mixed with
known variable quantities. In counter mode only the low-order bits of the input
change with each encryption. Hence there are few variable intermediates to tar-
get in the first round of a typical block cipher. We demonstrate a method for
propagating the attack into later rounds in which more known, variable data is
available.

Although counter mode presents additional challenges to DPA attacks, in
certain respects it also makes the attack easier. Unlike most first-order DPA
attacks, the sequential nature of the counter enables the attack to succeed with

in CHES 2007 (c) IACR

only knowledge of the power measurements. Knowledge of input, output, and
initial counter values are not required to implement the attack.

1.1 Related Work

Simple power analysis (SPA) attacks have been used to extract portions of keys
directly from power traces without requiring knowledge of input messages. Fahn
and Pearson used inferential power analysis (IPA), an attack that exploits binary
SPA leaks [5]. Mayer-Sommer presented attacks exploiting SPA leaks in high-
amplitude power variations [6]. Mangard presented an SPA attack against the
AES key expansion step [7]. Messerges et al described SPA attacks on Hamming
weight and transition count leaks [8].

Side channel collision attacks were introduced by Dobbertin, and have tra-
ditionally targeted SPA leaks using chosen ciphertext [9] [10] [11]. Side channel
collision attacks can be adapted to the case in which inputs are known to be
successive values of a counter.

High-order differential power analysis (HO-DPA) [12] attacks target a hy-
pothesized key-dependent relationship between data parameters in a computa-
tion. Previous work has noted that HO-DPA attacks can be applied to situations
in which cipher input values are not known [13].

Fouque and Valette presented the “doubling attack” [14] which exploits the
relationship between inputs in successive RSA decryptions to recover the expo-
nent. The attack succeeds despite the fact that the input to the modular expo-
nentiation step is masked by a blinding factor. Messerges presented a second-
order DPA attack [15] that defeated a data whitening scheme.

Chari et al [16] and Akkar et al [17] also presented DPA attacks on block
ciphers with a “whitening” step.

2 Preliminaries

2.1 Notation

Suppose X and Y are used to denote input and output data of a transforma-
tion. (Letters other than X or Y will also be used.) If the transformation is
implemented as a sequence of rounds, the input and output of the ith round are
denoted by Xi and Yi.

Within a round, data may be partitioned into bytes for processing. Xi,j and
Yi,j denote the jth bytes of round data Xi and Vi.

K is used to denote input keys, Ki denotes the ith round key derived from
K, and Ki,j denotes the jth byte of round key Ki.

Symbols
The symbol ‘⊕’ denotes the bitwise XOR of two n-bit vectors.
The symbol ‘+’ denotes the ordinary addition of two numbers.
The symbol ‘◦’ denotes multiplication between two elements of GF (28).
The symbol ‘||’ denotes the concatenation of two vectors.

in CHES 2007 (c) IACR

2.2 Description of AES

Although most readers are no doubt familiar with AES, this section gives a brief
review of its design. The round transformations are grouped differently than
in the AES standard to facilitate presentation of the attack, but the algorithm
described here is equivalent to AES. The review will also familiarize the reader
with the notation and concepts used in this paper.

AES is a block cipher that operates on 16-byte blocks of data. It is designed
as a sequence of 10, 12, or 14 rounds, depending on whether the key K is 16,
24, or 32 bytes in length. The key is expanded by the AES key schedule into
16-byte round keys Ki.

The round structure of AES encryption. The following transformations
are performed during each round of an AES encryption:

1. AddRoundKey
2. SubBytes
3. ShiftRows
4. MixColumns1

These operations are described below, using the following notation for interme-
diate round states:

Xi denotes the input to round i and the AddRoundKey transformation.
Yi denotes the output of the AddRoundKey transformation and the input to

the SubBytes transformation.
Zi denotes the output of the SubBytes transformation and the input to the

ShiftRows transformation.
Ui denotes the output of the ShiftRows transformation and the input to the

MixColumns transformation.
Vi denotes the output of the MixColumns transformation and the input to the

next round: Vi = Xi+1.

AddRoundKey Each byte of Yi,j is produced by computing the exclusive or
(XOR) of a byte of incoming data Xi,j with the corresponding byte of round
key Ki,j :

Yi,j = Xi,j ⊕Ki,j . (1)

SubBytes Each byte of input data is transformed via an invertible non-linear
8-bit lookup table S:

Zi,j = S[Yi,j] = S[Xi,j ⊕Ki,j] . (2)

1 The MixColumns operation is not performed in the final round, and an additional
AddRoundKey operation is performed after the final round.

in CHES 2007 (c) IACR

ShiftRows ShiftRows permutes the bytes within the data vector:

Ui = Zi,0 Zi,5 Zi,10Zi,15 Zi,4 Zi,9 Zi,14 Zi,3 Zi,8 Zi,13 Zi,2 Zi,7 Zi,12 Zi,1 Zi,6 Zi,11

MixColumns The jth column of Ui is defined to be the four bytes

{Ui,4j , Ui,4j+1, Ui,4j+2, Ui,4j+3} .

MixColumns is an invertible linear transformation over GF (28) performed
on the columns of Ui. The jth column of output Vi is defined to be:

Vi,4j = ({02} ◦ Ui,4j)⊕ ({03} ◦ Ui,4j+1)⊕ ({01} ◦ Ui,4j+2)⊕ ({01} ◦ Ui,4j+3)
Vi,4j+1 = ({01} ◦ Ui,4j)⊕ ({02} ◦ Ui,4j+1)⊕ ({03} ◦ Ui,4j+2)⊕ ({01} ◦ Ui,4j+3)
Vi,4j+2 = ({01} ◦ Ui,4j)⊕ ({01} ◦ Ui,4j+1)⊕ ({02} ◦ Ui,4j+2)⊕ ({03} ◦ Ui,4j+3)
Vi,4j+3 = ({03} ◦ Ui,4j)⊕ ({01} ◦ Ui,4j+1)⊕ ({01} ◦ Ui,4j+2)⊕ ({02} ◦ Ui,4j+3)

where {01}, {02}, {03}, and Ui,4j , Ui,4j+1, Ui,4j+2, Ui,4j+3 are considered 8-bit
vectors representing elements in GF (28).

The linearity of the AES MixColumns transformation will be exploited during
the attack. Suppose that input data can be selected such that in round i, one
or more input bytes to the MixColumns operation are unknown, but are known
to remain constant across multiple invocations of the AES algorithm. Then the
contribution of these constant bytes to Vi is equivalent to XORing with fixed
constants.

For example, suppose bytes U1,4j+1, U1,4j+2, and U1,4j+3 are constant (but
unknown) across multiple invocations of AES. Then the values

E1,4j = ({03} ◦ U1,4j+1)⊕ ({01} ◦ U1,4j+2)⊕ ({01} ◦ U1,4j+3)
E1,4j+1 = ({02} ◦ U1,4j+1)⊕ ({03} ◦ U1,4j+2)⊕ ({01} ◦ U1,4j+3)
E1,4j+2 = ({01} ◦ U1,4j+1)⊕ ({02} ◦ U1,4j+2)⊕ ({03} ◦ U1,4j+3)
E1,4j+3 = ({01} ◦ U1,4j+1)⊕ ({01} ◦ U1,4j+2)⊕ ({02} ◦ U1,4j+3)

will be constant, and the MixColumns output can be expressed as

V1,4j = ({02} ◦ U1,4j)⊕ E1,4j

V1,4j+1 = ({01} ◦ U1,4j)⊕ E1,4j+1

V1,4j+2 = ({01} ◦ U1,4j)⊕ E1,4j+2

V1,4j+3 = ({03} ◦ U1,4j)⊕ E1,4j+3 . (3)

As will be shown in Section 3, the constant, unknown terms E can then be
incorporated into the round key of the next round, and effectively ignored.

in CHES 2007 (c) IACR

2.3 Counter Mode

Counter mode is a standard mode of operation for block ciphers in which ci-
phertext is produced by encrypting a counter and XORing the result with the
plaintext block. Let B be a block cipher using key K, C the initial counter
value, and XT the T th block of plaintext to be encrypted. Then the T th block
of ciphertext YT is given by

YT = XT ⊕Benc(C + T,K) .

Ciphertext is decrypted by XORing it with same encrypted counter value:

XT = YT ⊕Benc(C + T,K) .

Since counter values are inputs to the first round only, Cj and Tj will be used
to denote the jth bytes of C and T respectively, and not their values at round
j. See [4] for more information on counter mode.

Galois counter mode Galois counter mode (GCM) [18] is a draft counter
mode protocol currently being studied by NIST. In GCM, the initial counter
value is derived from a variable-sized initialization vector (IV). If the length of
the IV is not exactly 96 bits, then the initial counter value C is derived from
the IV using a secret key. In protocols where the IV is exactly 96 bits long, at
least part of the initial counter value may be secret. For example, in RFC 4106
[19] the first four bytes of the IV are derived with the AES key and may remain
secret. The attack described in this paper assumes that the entire initial counter
value C is unknown.

3 The Attack on AES in Counter Mode

This section will present a first-order DPA attack against AES in counter mode
with unknown initial counter value C.

To keep the index notation from getting too cumbersome, the symbol “T” is
omitted from subscripts. When data is described as constant or variable, how-
ever, it means that the data is constant or variable with respect to T . For ex-
ample, when we say that an attack recovers a variable such as Z1,15, it means
that it recovers each value the variable took for each value of T .

3.1 Overview

The main stages of the attack are as follows:

1. Perform data collection.
2. Use DPA against the first round to recover Z1,15 and Z1,14.

in CHES 2007 (c) IACR

3. Derive the input to the second round, manipulating unknown values sym-
bolically. Eight bytes of input to the second round are unknown constants,
but the other eight can be expressed as

X2,j = X̃2,j ⊕ E1,j

where X̃2,j is known and variable, and E1,j is unknown, but constant.
4. Use DPA to determine the eight variable bytes of Z2,j corresponding to the

8 variable bytes X2,j .
5. Derive the input to the third round, manipulating unknown constants sym-

bolically. Each of the sixteen bytes of X3 can be expressed as

X3,j = X̃3,j ⊕ E2,j ,

where X̃3,j is known and variable, and E2,j is unknown, but constant.
6. Use DPA to determine the sixteen variable bytes of Z3.
7. Derive the input to the fourth round. There are no unknown or constant

bytes in Z3, so X4 can be derived exactly.
8. Perform a standard DPA attack in the fourth round, using known input

values X4. Iterate the attack into subsequent rounds as necessary, recovering
as many round keys as required to reverse the key schedule and obtain the
key.

These attack stages are described in detail below.

3.2 Attack Details

Step 1: Data Collection. Encrypt 216 consecutive blocks of data in counter
mode, with unknown initial counter, and initial data blocks given by X1 =
C + T .

Record power traces covering the first four rounds of each encryption. Traces
should cover the fifth round as well if the target key is longer than 16 bytes.

Step 2: Recover Z1,15. The DPA attack in this step uses the known byte T15

as the input, and performs a 15-bit exhaustive search over the bits defined
below.

Let C15,lo and K1,15,lo denote the low-order 7 bits of C15 and K1,15, respectively.
Let C15,hi denote the high-order bit of C15, and b15 denote the XOR of C15,hi

with the high-order bit of K1,15. Let ε15 denote the outgoing carry of C15 + T15.
The reader can verify that

(C15 + T15) mod 256 = (27 ∗ C15,hi)⊕ ((C15,lo + T15) mod 256) . (4)

Then Equations 1 and 4 imply that

Y1,15 = K1,15 ⊕ ((C15 + T15) mod 256)
= K1,15 ⊕ (27 ∗ C15,hi)⊕ ((C15,lo + T15) mod 256)
= (27 ∗ b15)⊕K1,15,lo ⊕ ((C15,lo + T15) mod 256) . (5)

in CHES 2007 (c) IACR

Hence, the DPA search only depends on the 15 unknown bits in Equation 5:
the bit b15, seven bits of K1,15,lo, and seven bits of C15,lo. Also, note that the
high-order bits of K1,15 and C15 cannot be distinguished by this search.

The relationship between the parameters is shown in Figure 1. Note that
because Y1,15 is an eight bit quantity, it does not depend on the carry bit ε15.

T
14

K
1,14

Y
1,14

T
15

K
1,15

C
15

Y
1,15

15
C
14

14

Fig. 1. Relationship between T , C, K, and Y for bytes 14 and 15 in Round 1 of the
attack.

Step 3: Recover Z1,14. The DPA attack in this step uses the known byte T14

as the input, and performs a 16-bit exhaustive searching over the following
bits: the bit C15,hi, the low-order 7 bits of C14, the low-order 7 bits of K1,14,
and the bit b14, defined as the XOR of the high-order bit of C14 with the
high-order bit of K1,14.

Y1,14 is given by

Y1,14 = K1,14 ⊕ ((C14 + T14 + ε15) mod 256) .

Y1,14 depends on ε15, which iteself depends upon C15. Hence C15,hi (the only bit
of C15 not recovered in Step 2) is one of the bits searched for in this step. As in
Step 2, the search recovers b14 but is unable to distinguish the high-order bits
of K1,14 and C14, nor determine the value of the carry bit ε14.

Step 4 Select those values of T, 0 ≤ T < 216 for which the bytes X1,0 . . . X1,13

remain constant.

These bytes will remain constant if the carry bit ε14 remains constant. Let
(C14,lo||C15) denote the 15-bit integer resulting from the concatenation of C14,lo

and C15. Even though the actual value of ε14 is unknown, the reader can verify
that it remains constant for those values of T satisfying

215 − (C14,lo||C15) ≤ T < 216 − (C14,lo||C15) . (6)

This gives a subset of T values for which, after applying the AddRoundKey
transformation to X1 and SubBytes transformation to Y1:

in CHES 2007 (c) IACR

– The 14 bytes {Z1,0 . . . Z1,13} are unknown, but constant.
– The bytes Z1,14 and Z1,15 are known, and varying.

The remainder of the attack proceeds using only the 215 traces corresponding to
this subset of T values.

Step 5: Apply the ShiftRows and MixColumns operation to Z1 to compute
V1 = X2, the input to Round 2, manipulating unknown values symbolically.

Using Equation 3 (discussed in §2.2), it can be shown that X2 has the following
properties:

– Bytes X2,0 . . . X2,7 have the form

X2,j = X̃2,j ⊕ E1,j , (7)

where X̃2,j are known and vary with T , and the E1,j are unknown, but
constant with respect to T.

– Bytes X2,8 . . . X2,15 are unknown, but constant.

Step 6: Apply the Round 2 AddRoundKey transformation to X2 to compute
Y2, manipulating unknown values symbolically.

For X2,0 . . . X2,7, the results are

Y2,j = (X̃2,j ⊕ E1,j)⊕K2,j

= X̃2,j ⊕ (E1,j ⊕K2,j)

= X̃2,j ⊕ K̃2,j . (8)

For these bytes, the AddRoundKey transformation is equivalent to XORing
known and varying input data X̃2,j with constant “key” bytes K̃2,j .

Step 7: Use DPA to recover K̃2,0 . . . K̃2,7 using X̃2,0 . . . X̃2,7 as known inputs
into the relationship:

Z2,j = S[X̃2,j ⊕ K̃2,j] . (9)

This step displays one of the most crucial (and interesting) features of the attack.
We cannot use the correct values for X2,j as input to the DPA attack, since they
are unknown. Instead, we treat the known values X̃2,j as the input. They differ
from the correct values by fixed error terms E1,j . The keys recovered are not the
correct keys, but differ from them by the same fixed error terms. As Equations
8 and 9 show, these error terms then cancel when Y2,j and Z2,j are computed,
leaving us with the correct values for them.

Since bytes X2,8 . . . X2,15 are unknown but constant, the corresponding bytes
Z2,8 . . . Z2,15 are also unknown, but constant.

At the end of this step,

in CHES 2007 (c) IACR

– Z2,0 . . . Z2,7 are varying, and known exactly.
– Z2,8 . . . Z2,15 are unknown, but constant.

Step 8: As in step 5, apply the ShiftRows and MixColumns operation to Z2

to compute V2 = X3, the input to Round 3, manipulating unknown values
symbolically.

Again, the result can be expressed in terms of a known vector X̃3 as:

X3 = X̃3 ⊕ E2 ,

where

– E2 is a vector of 16 unknown, but constant bytes.
– Every byte of X̃3 is known and variable.

Step 9: Use DPA to recover Z3.

The attack uses X̃3 as the known variable input, and recovers K̃3, and all 16
correct bytes of Z3.

Step 10: Given all 16 correct values of Z3, apply the ShiftRows and MixCols
operation to obtain V3 = X4.

Note that at this point all the error terms are gone, and X4 is the correct input
to round 4.

Step 11: Use DPA to obtain K4 using the known, variable Round 4 input X4.

If 24 or 32-byte keys are used, repeat Steps 10 and 11 in Round 5 to recover
another round key.

Step 12: After recovering enough round keys, reverse the key schedule and
determine the original AES key.

4 Results

The attack was implemented against a smart card performing AES-128 in counter
mode with unknown initial counter value.

Step 1 Power traces were collected during 216 sequential encryptions.

in CHES 2007 (c) IACR

Step 2 A custom program was written to search over K1,15,lo, C15,lo, and b15,
using the input values of T15 to generate predicted values of Z1,15. Then DPA
was used to evaluate the predictions. The analysis took about 11 minutes on a
Dell workstation and revealed that (K1,15,lo, C15,lo, b15) = (30h, 42h, 0).

Because evaluating 215 difference traces individually is somewhat tedious, we
measured and plotted the average square of the total amplitude of the differen-
tials observed in each differential trace.

In addition to the primary spike at (30h, 42h, 0), this representation reveals
secondary harmonics at (70h, 02h, 1), (10h, 62h, 0), and a few other locations as
expected. Note that the AES substitution table is extremely flat, and does not
contribute these harmonic peaks. Rather the spikes observed in this figure are
due to relationships between the input parameters, stemming from the structure
of the XOR and ADD combination.2

Fig. 2. DPA search results in compact form, showing primary spike for K1,15,lo = 30h,
C15,lo = 42h, and b15 = 0 at offset 6210 of 32678.

Step 3 A standard DPA attack was implemented to recover C15,hi, K1,14,lo,
C14,lo, and b14, using T14 as the primary input, and T15 and C15,lo to derive the
ε15. This information was then used to compute Z1,14.

The analysis revealed that C15,hi = 0, K1,14,lo = 65h, C14,lo = 35h, and
b14 = 0.

Step 4 The recovered values

(C14,lo, C15) = (35h, 42h)
2 Consider the eight-bit construction Y = f(K, C, X) = K⊕ (C +X) mod 256. There

are fifteen “harmonic” values of (Ki, Ci) for which f(Ki, Ci, X) = f(30h, 42h, X) for
half of the possible values of X. With these related keys the input to the SubBytes
would be correct exactly 50% of the time. At the output of the SubBytes operation,
individual bits of Z1,15 are correct about 75% of the time, leading to high-amplitude
spikes in single-bit analysis. The Hamming weight of Z1,15 is correct 57%− 64% of
the time for these related keys. If correlation or other multi-bit analysis methods are
used the statistical significance of the harmonic spikes will be observed with greater
clarity.

in CHES 2007 (c) IACR

were used to determine the values of T for which bytes 0..13 of C + T remain
constant. These values are given by

215 − 3542h ≤ T < 216 − 3542h ⇒ 19134 ≤ T < 51902 .

For the remainder of the attack, only those power traces for which T is in this
range were used.3

Step 5 In this step we need to apply the ShiftRows and MixColumns to the
Z1 to compute X2. Only Z1,14 and Z1,15 are known, however, and our analysis
software is not configured to handle variables symbolically. As noted in Step 7,
however, the DPA attack to recover the eight bytes Z2,0 . . . Z2,7 is unaffected
by the actual values of the error terms E1,j derived from the unknown bytes of
Z1. Hence, to complete this step, we substituted the value 0 for each unknown
constant byte. We were then able to perform the ShiftRows and MixColumns
transformations using our existing software.

Steps 6,7 DPA was used to recover “key” bytes

K̃2,0 = K2,0 ⊕ E1,0 . . . K̃2,0 = K2,7 ⊕ E1,7 ,

using input data

X̃2,0 = X2,0 ⊕ E1,0 . . . X̃2,7 = X2,7 ⊕ E1,7 .

The 8 bytes of K̃2,0 . . . K̃2,7 recovered were:

K̃2 = 30451E9FD1923450----------------h

Given the K̃2,j and X̃2,j we calculated the correct values Z2,0 . . . Z2,7 by:

Z2,j = S[X̃2,j ⊕ K̃2,j]

Step 8 At this point, bytes Z2,0 . . . Z2,7 are known and variable, and the re-
maining Z2,j are unknown but constant. As in Step 5, the unknown Z2,j are set
to zero, and the second round completed. All 16 bytes of V2 = X3 have the form

X3,j = X̃3,j ⊕ E2,j

where the X̃3,j is known and variable, and Ẽ2,j are unknown but constant.

Step 9 As in Step 7, the X̃3,j were used as known input to a DPA attack to
recover K̃3,j and Z3,j . All 16 bytes of Z3 were recovered, as was the entire key
K̃3.

K̃3 = 7A610872DE8FE299708A89A85DD9914Dh

3 The signal-to-noise levels observed in this dataset were sufficiently high that we
actually performed the attack on round two using only 213 traces.

in CHES 2007 (c) IACR

Step 10 With all 16 values of Z3 known, we simply completed the round to
compute V3 = X4, the correct input to Round 4.

Step 11 We performed standard DPA using correct, known variable inputs X4

The following key was recovered:

K4 = 52438AAD476E016D31EAE1CDAE8E0F3Dh

Step 12 Since the target of this attack was performing AES-128, at this point
we had sufficient material from the key schedule to compute the correct input
key. Running the key schedule backwards gave:

K4 = 52438AAD476E016D31EAE1CDAE8E0F3Dh

K3 = 156B0676152D8BC07684E0A09F64EEF0h

K2 = F6C0556800468DB663A96B60E9E00E50h

K1 = CC8D5116F686D8DE63EFE6D68A496530h

Therefore, the 128-bit AES key recovered by this attack is equal to

K = CC8D5116F686D8DE63EFE6D68A496530h

and the attack is complete.

5 Concluding Remarks

In this paper we described a first-order DPA attack against AES in counter
mode with an unknown counter. We introduced a technique to shift unknown
constant data onto round keys such that they could be effectively ignored. This
compensates for the unknown counter value, as well as the counter mode property
that only the low-order bytes of the input change.

The techniques presented here were used to mount an attack against a smart
card implementation of AES in counter mode. The attack required only 213 traces
pulled from a set of 216 sequential operations. The same technique might still
succeed using 28 or fewer sequential traces, if the leakage rates are sufficiently
high.

Countermeasures that defend against first-order DPA attacks should be effec-
tive against this attack as well. Also, modifying the method by which the counter
updates (using a linear feedback shift register, for example) would present a chal-
lenge to this attack.

The techniques in this paper can be applied to other cryptographic algo-
rithms. In general, when an unknown constant is mixed with known variable
data, DPA can be used to mount an attack if the mixing function is nonlin-
ear. As we have shown, if the mixing function is linear, evaluation of the secret
constant can often be postponed until an attack is possible.

in CHES 2007 (c) IACR

References

1. Paul Kocher, Josh Jaffe, and Benjamin Jun. Differential Power Analysis. In Ad-
vances in Cryptology - CRYPTO 1999, LNCS 1666, Springer-Verlag, 1999, pp.
388–397.

2. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, Pankaj Rohatgi. Towards Sound
Approaches to Counteract Power-Analysis Attacks In Advances in Cryptology -
CRYPTO 1999, LNCS 1666, Springer-Verlag, 1999, pp. 398–412.

3. National Institute of Standards and Technology. Advanced Encryption Standard
(AES) (FIPS PUB 197). National Institute of Standards and Technology. Federal
Information Processing Standards Publication 197 (FIPS 197), November 2001.

4. M. Dworkin. Recommendation for Block Cipher Modes of Operation:Methods and
Techniques National Institute of Standards and Technology. Special Publication
800-38A, December 2001.

5. Paul N. Fahn, Peter K. Pearson. IPA: A New Class of Power Attacks In Crypto-
graphic Hardware and Embedded Systems - CHES 1999, LNCS 1717, Springer-
Verlag, 1999, pp. 173–186.

6. Rita Mayer-Sommer. Smartly Analyzing the Simplicity and the Power of Simple
Power Analysis on Smartcards In Cryptographic Hardware and Embedded Sys-
tems - CHES 2000, LNCS 1965, Springer-Verlag, 2000, pp. 78–92.

7. Stefan Mangard. A Simple Power-Analysis (SPA) Attack on Implementations of
the AES Key Expansion In ICISC 2002, LNCS 2587, Springer-Verlag, 2002, pp.
343–358.

8. Thomas Messerges, Ezzy Dabbish, Robert Sloan. Investigations of Power Analysis
Attacks on Smartcards. In Proc. USENIX Workshop on Smartcard Technology,
1999, pp. 151–162.

9. Hervé Ledig, Frédéric Muller, Frédéric Valette. Enhancing Collision Attacks In
Cryptographic Hardware and Embedded Systems - CHES 2004, LNCS 3156,
Springer-Verlag, 2004, pp. 176–190.

10. Kai Schramm, Thomas Wollinger, and Christof Paar. A New Class of Collision
Attacks and its Application to DES In Fast Software Encryption - FSE 2003, LNCS
2887, Springer-Verlag, 2003, pp. 206–222.

11. Kai Schramm, Gregor Leander, Patrick Felke, Christof Paar. A Collision-Attack on
AES Combining Side Channel- and Differential- Attack In Cryptographic Hard-
ware and Embedded Systems - CHES 2004, LNCS 3156, Springer-Verlag, 2004,
pp. 163–175.

12. Paul Kocher, Josh Jaffe, Benjamin Jun. Introduction to Differential Power
Analysis and Related Attacks (Technical Report), http://cryptography.com/

resources/whitepapers/DPATechInfo.pdf and http://web.archive.org/web/

19990504025809/www.cryptography.com/dpa/technical/index.html via http:

//tinyurl.com/244azs and http://tinyurl.com/2zgfc3, 1998.

13. Josh Jaffe, Benjamin Jun, Paul Kocher. Advanced Topics 1, Presentation for the
DPA Workshop, Chicago IL, Cryptography Research, May 14-15 1999.

14. Pierre-Alain Fouque, Frédéric Valette, The Doubling Attack – Why Upwards Is
Better than Downwards In Cryptographic Hardware and Embedded Systems -
CHES 2003, LNCS 2779, Springer-Verlag, 2003, pp. 269–280.

15. Thomas Messerges. Using Second-Order Power Analysis to Attack DPA Resistant
Software In Cryptographic Hardware and Embedded Systems - CHES 2000, LNCS
1965, Springer-Verlag, 2000, pp. 238–251.

in CHES 2007 (c) IACR

16. Suresh Chari, Charanjit Jutla, Josyula R. Rao, Pankaj Rohatgi. A Caution-
ary Note Regarding Evaluation of AES Candidates on Smart-Cards AES Second
Candidate Conference, http://csrc.nist.gov/encryption/aes/round1/conf2/

papers/chari.pdf, February 1999.
17. Mehdi-Laurent Akkar, Régis Bevan, Paul Dischamp, Didier Moyart. Power Anal-

ysis, What Is Now Possible, In ASIACRYPT 2000, LNCS 1976, Springer-Verlag,
2000, pp 489–502.

18. David A. McGrew, John Viega. The Galois/Counter Mode of Operation (GCM)
National Institute of Standards and Technology. Draft Special Publication 800-
38D. May 31, 2005.

19. Viega, J. and D. McGrew, The Use of Galois/Counter Mode (GCM) in IPsec
Encapsulating Security Payload (ESP), RFC 4106, June 2005.

in CHES 2007 (c) IACR

