First-Order DPA Attack Against AES in Counter Mode w/ Unknown Counter

Josh Jaffe
CHES 2007

Cryptography Research, Inc.
www.cryptography.com
575 Market St., 21st Floor, San Francisco, CA 94105

DPA Attack, typical structure

- Collect a set of power traces, with corresponding known variable data, \(X \).
- Guess the value of a constant \(K \) that is mixed with \(X \).
- Predict a variable intermediate \(I \) and use values to partition the set of traces.
- DPA test: compute differences between average of each partition. (Compute significance of differences in power measurements between subsets.)

Result: If intermediate \(I \) leaks, the DPA test shows spikes when guess \(K \) is correct.

"F" is a small portion of the cipher that the attack chooses to focus on.
DPA Attack, typical structure

Assumptions (typical attack):
- Input or output X to block cipher is known: “Attack input” data.
- Attack input data X varies significantly over set of traces analyzed.
 - usually either chosen or random input

Counter Mode

- Counter mode uses a block cipher B in a stream cipher mode:
 - $O_T = B_enc(C + T, K)$
 - $Y_T = O_T \oplus X_T$

- Differences from traditional DPA attack:
 - Assume inputs (counter values) and outputs of block cipher are not known
 - Only a few bits of the input data (the counter value) vary over set of collected traces.
Results

- The new attack develops a method for handling unknown input (counter values) and output.
- The new attack develops a method for handling protocols in which only a few bits of the input are varying.
- Contrary to what I’ve previously said, a high-order attack is not necessary here.

Attack Details
Overview of the attack

- Collect Data (e.g. 2^{16} consecutive traces).
- Use DPA to attack the two low-order bytes of the counter (first round).
- Propagate attack into AES rounds two and three.
- The input to round 4 is fully known, fully variable.
 - Apply standard DPA to recover round key

Data Collection

- Collect a few more than the number of traces needed to mount a 1st-order DPA attack on the device.
 - As implemented: 2^{16} traces. (2h37m)
 - Record data for first 4 or 5 rounds of each encryption
Recovering two low-order bytes in Round 1

- **Input values**
 - Counter (AES input) is $C_r = C + T$.
 - T is a known value, starting at 0.
 - Treat T as the input to the cipher.

- **DPA attack:**
 - Guess $K_{1,15}$ and $C_{1,15}$. Predict SubBytes output byte $Z_{1,15}$.
 - Repeat attack to recover C_{14}, $K_{1,14}$, and ϵ_{15}.
 - Attack does not actually recover ϵ_{14}.
 - For remaining stages of the attack, work only with the subset of traces for which bytes 0 through 13 of C_T are constant.
 - See paper for details

Results (power traces)

- **Attack implementation / results:**
 - $K_{1,15,lo} = 30h$, $C_{15,lo} = 42h$, $b_{15} = 0$.
 - $K_{1,14,lo} = 65h$, $C_{14,lo} = 35h$, $b_{14} = 0$, and $C_{15,hi} = 0$ so $K_{1,15,hi} = 0$.

- **X axis:** guess of K and C.
- **Y axis:** amplitude of spikes observed (absolute value).
Attacking round 1

Legend
- Unknown constant data (or secret key)
- Known, variable data
- XOR of known variable data with unknown constant data
- Function of known variable data with unknown constant data

1. Round 1 input, X_1
2. Round key, K_1
3. XOR Bytes Out, Y_1
4. SubBytes Out, Z_1
Attacking round 1

Legend
- Unknown constant data (or secret key)
- Known, variable data
- XOR of known variable data with unknown constant data
- Function of known variable data with unknown constant data

MixCols Out, $V_1 = X_2$
The attack into rounds 2 and 3

\[X_{2,j} = (E_{1,j} \oplus \tilde{X}_{2,j}) \]

Legend

- Unknown constant data (or secret key)
- Known, variable data
- XOR of known variable data with unknown constant data
- Function of known variable data with unknown constant data
The attack into rounds 2 and 3

Legend
- Unknown constant data (or secret key)
- Known, variable data
- XOR of known variable data with unknown constant data
- Function of known variable data with unknown constant data

Known "input", \tilde{X}_2
Round 2 "key", \tilde{K}_2
XorBytes out, Y_2
SubBytes out, Z_2
The attack into rounds 2 and 3

- Known "input", \tilde{X}_2
- Round 2 "key", \tilde{K}_2
- XorBytes out, Y_2
- SubBytes out, Z_2
- ShiftRows out, U_2

Legend:
- Unknown constant data (or secret key)
- Known, variable data
- XOR of known variable data with unknown constant data
- Function of known variable data with unknown constant data

The attack into rounds 2 and 3

- Known "input", \tilde{X}_2
- Round 2 "key", \tilde{K}_2
- XorBytes out, Y_2
- SubBytes out, Z_2
- ShiftRows out, U_2
- MixCols out, $V_2=X_3$

Legend:
- Unknown constant data (or secret key)
- Known, variable data
- XOR of known variable data with unknown constant data
- Function of known variable data with unknown constant data
The attack into rounds 2 and 3

Legend
- Unknown constant data (or secret key)
- Known, variable data
- XOR of known variable data with unknown constant data
- Function of known variable data with unknown constant data
The attack into round 4

At this point the attack has overcome both challenges presented by counter mode:

- Input (to round 4) is fully known
- Input is varying randomly.

The attack continues from start of round 4 using standard DPA methods.

Conclusions (1/3)

- A 1st-order DPA attack can be possible if input is not known but relationship between inputs can be expressed in terms of known values.
 - Attack works in realistic, low-leakage-rate DPA scenarios.
 - No reliance on SPA high-amplitude leaks.
Conclusions (2/3)

- The general method for dealing with constant portions of input message data: Ignore it until it is mixed with variable data.
 - A. If mixing function is nonlinear:
 - Can attack now with DPA. (e.g. SubBytes of XorBytes.)
 - Can defer attack, but increase size of subsequent key search exponentially.
 - B. If mixing function is linear:
 - Can postpone the attack until later.

Conclusions (3/3)

- In some analysis scenarios, attacking counter mode will be easier.
 - For example, analysis lab need not implement complicated interface to device under test.
 - Only need to measure & record power consumption.

- Summary: Just because a device is in counter mode, with secret counter value, don’t assume that the device is secure!
Questions

- Why 2^{16} traces? Isn’t that a lot?
 - DPAWS is fast... crunches the numbers in 4 minutes.
 - Can crunch 5k traces in 4 seconds once they’re in the cache.

- What if leakage rate is so low that (say) 200k traces are needed?
 - More unknown bytes are varying...
 - Attack may still be possible with modifications.

- What if total data is less than 2^{16} blocks / counter?
 - E.g. Ethernet frame size: ~4k packets
 - Attack will succeed/fail depending on leakage rate of device.

- What if counter update is LFSR, not increment?
 - Attack the LFSR construction – it’s a different attack.

- What about “bit permuting” ciphers (DES) / or those who update noncontiguous bits of counter?
 - Either counter update is localized (most S-box inputs constant) or is not localized (most S-box inputs are variable).
 - In the latter case, there may be no need to push the attack all the way into the fourth round.