

Workshop on Side-channel Analysis:

Cryptography Concepts and

Background

2

Fundamental Concepts

Symmetric key cryptography

Symmetric encryption algorithms are used to bulk encrypt (scramble) large blocks of data.

Modern symmetric algorithms are typically block ciphers. They use a secret key K to encrypt N-

bit blocks of data. Modern block ciphers transform the data in a series of rounds. Each round

uses a different round key RK, which is typically derived from K. Round transformations

typically operate on smaller sub-blocks of the N-bit block. For example, the Advanced

Encryption Standard (AES) encrypts 128-bit blocks, but operates on 8-bit blocks during the

round transformations.

AES

The round structure of AES is shown in the Figure below.

Each byte Xj is XORed with a byte of key Kj. The resulting intermediates Ij are transformed by

an invertible nonlinear 8-bit lookup table S. The ShiftRows operation permutes the bytes and

groups them into four-byte blocks. The MixColumns operation is an invertible linear

transformation acting on 4 bytes, and operates on each of the four-byte blocks independently.

DES

Data Encryption Standard (DES) is a Feistel network, in which half of the data (32 bits out of 64)

is transformed each round. The main round transformation is show in the figure below.

3

The 32 bits are expanded to 48 bits, and grouped into eight 6-bit blocks. As with AES, each

block Xj is XORed with a block of key Kj. The results of the XORs are then transformed by

64 bit lookup tables Sj. The bits of the resulting intermediates Ij are then permuted, and the

permuted bits are then XORed with the other 32 bits of the data (not shown), to complete the

round.

Note that in both algorithms, a small block of data is XORed with a small block of key, and the

result is passed through a nonlinear transformation. This construction is often seen in block

ciphers, and is useful when performing side-channel analysis.

Parameters for two common algorithms, AES, and DES, are shown below.

Acronym Data Block length Key lengths Number of Rounds

AES 128 bits 128 bits

192 bits

256 bits

10

12

14

DES 64bits 56 bits (+8 bits of

“checksum”)

16

Because of its small key size, DES is sometimes run three times consecutively (Triple DES), for

a total of 48 rounds. Triple DES has several variants, using either two or three keys.

There are many other encryption algorithms, but these are two of the most commonly

encountered algorithms.

4

Public key (asymmetric) cryptography

Public key cryptography has two main uses:

1. Encrypt keys for use in symmetric cryptographic algorithms. Public key algorithms tend

to be too slow for bulk encryption, so they are used to encrypt keys for transfer, which

will then be used to encrypt bulk data.

2. Digitally sign/verify messages.

Public key cryptosystems generally have a pair of keys: a private key which must be kept secret,

and a public key which is not sensitive and can be freely distributed.

There are two classes of public key algorithm commonly encountered.

1. Algorithms based on the difficulty of factoring

2. Algorithms based on the difficulty of the discrete log problem.

RSA

The security of RSA is based on the difficulty of factoring a modulus which is the product of two

large random primes.

 Private key: Large primes p and q, typically on the order of 512-2048 bits each, and a

decryption/signing exponent d = (1/e) mod (p-1)(q-1)

 Public key: Modulus N = p*q, and encryption/verification exponent e. e is typically 3,

17, or 65537.

The following are simplified
1
 descriptions of how the RSA algorithm is used for

encryption/decryption as well as for signing/verification.

Encryption/decryption

 Encryption: Given a message M, compute ciphertext C by C = M

e
 mod N.

 Decryption: To decrypt ciphertext C, compute M = C
d
 mod N.

Signing/verification

To sign a message M, let H(M) denote the hash of M (see below for info on hash functions).

 Signature: M is signed by computing S by S = H(M)
d
 mod N.

 Verification: Signature S for M is verified by computing H(M) and H’(M) = S
e
 mod N

and checking that H’(M) = H(M).

1
 In actual usage, a variety of padding schemes are used to pad the message M or hash(M) to the length of the

modulus, before performing the private key operation.

5

RSA private key calculations are often sped up by performing calculations mod p and mod q

separately, and combining the results using the Chinese Remainder Theorem (CRT).

RSA decryption with CRT

Suppose a message M has been encrypted as above: C = M
e
 mod N. Then using decryption

exponents dp = d mod (p-1) and dq = d mod (q-1), decryption with CRT is as follows:

1. Mp = C
dp

 mod p

2. Mq = C
dq

 mod q

3. h = q
-1

 * (Mp – Mq) mod p

4. M = Mq + h*q

Using the CRT can significantly speed the decryption process, and is commonly used where

power and time considerations are critical.

Discrete log Based algorithms

The “classic” discrete log based algorithms are defined over the multiplicative group Z*(p) for

large primes p. The discrete log problem is the following:

In the group Z*(p), select a base point g. Then given a random point h = g
a
 mod p, find

the exponent a (i.e. find the log of h to the base g, mod p).

In discrete log based algorithms, the secret is the exponent a, and the public value is g
a
 mod p.

Several discrete log based algorithms commonly used are described below.

Diffie-Hellman (DH) key agreement protocol

Alice and Bob generate a shared secret key as follows:

1. Alice and Bob agree on a large prime p

2. Alice generates random secret a, and computes ha = g
a
 mod p

3. Bob generates a random secret b, and computes hb = g
b
 mod p

4. Alice and Bob exchange ha = g
a
 mod p and hb = g

b
 mod p. (The exchange can occur on

an unprotected channel.)

5. Alice and Bob compute shared secret s = (ha)
b
 mod p = (hb)

a
 mod p = g

ab
 mod p.

Digital Signature Algorithm (DSA)

This algorithm is a NIST standard for digitally signing messages. To sign a message M, let

H(M) denote the hash of M.

 Parameters: Large primes q < p, where q divides p-1, and a number g where g
q-1

 mod p

= 1

6

 Key generation:

1. Alice generates a random secret key a, and computes public key h = g
a
 mod p

 Signature:

1. Alice generates a random secret nonce k, and computes r = (g
k
 mod p) mod q

2. Alice computes s = k
-1

 * (H(M) + a * r) mod q

3. Signature of M is (r, s)

 Verification

1. Bob computes u1 = s
-1

 * H(M) mod n and u2 = = s
-1

 * r mod q

2. v = ((g
u1

·h
u2

) mod p) mod q

3. Signature is valid if and only if v = r.

Other variants sometimes used include the Nyberg-Rueppel (NR), and Schnorr signature

algorithms. They are similar computationally and rely on a secret exponent a and public value g
a

mod p. See link below for details.

Elliptic curve cryptography

The algorithms above were defined over the multiplicative group Z*(p) for primes p. Elliptic

curves are groups for which the discrete log problem is thought to be harder than Z*(p). A

description of elliptic curves is outside the scope of this document. However, the Wikipedia

article linked below gives a brief introduction.

From the perspective of the cryptographic algorithms above, the change from the group Z*(p) to

an elliptic curve group is minimal. In particular, some of the exponentiations g
k
 is replaced with

an elliptic curve point multiplications k*G, where k is the multiplier and G is a point on the

elliptic curve. However, the flow of the algorithms is nearly identical for Z*(p) and elliptic

curve groups.

Hash Functions

Hash functions are algorithms designed to transform arbitrary sized input data into a fixed length

“fingerprint” for the data. Good hash functions have the following properties:

1. Preimage resistance: Given a hash value h, it should be hard to find a message M such

that hash(M) = h.

2. Collision resistance: It should be hard to find two messages M1 and M2 with the same

hash value (i.e. hash(M1) = hash(M2)).

7

Many hash functions operate by partitioning the input data into N-bit blocks, operating on each

block in a series of rounds, with the output of one set of rounds chained to the input block to the

next set of rounds. As with encryption algorithms, hash function round transformations typically

operate on smaller sub-blocks of the N-bit block. For example, SHA-1 and SHA-256 operate on

32-bit words, while SHA-512 operates on 64-bit words.

The Secure Hash Algorithm (SHA) family of hash functions is one of the most widely used.

There are a number of variants, shown below.

Acronym Data Block length Output length Number of Rounds

SHA-1 512 bits 160 bits 80

SHA-256 512 bits 256 bits 64

SHA-512 1024 bits 512 80

SHA-384 (truncated

SHA-512)

1024 bits 384 80

8

References

Acronym Meaning Link

AES Advanced Encryption Standard http://en.wikipedia.org/wiki/Advanced_Encry

ption_Standard

CRT Chinese Remainder Theorem http://en.wikipedia.org/wiki/Chinese_Remaind

er_Theorem

DES Data Encryption Standard http://en.wikipedia.org/wiki/Data_Encryption_

Standard

DH Diffie-Hellman Key Exchange http://en.wikipedia.org/wiki/Diffie%E2%80%

93Hellman_key_exchange

DSA Digital Signature Algorithm http://en.wikipedia.org/wiki/Digital_Signature

_Algorithm

ECC Elliptic Curve Cryptography http://en.wikipedia.org/wiki/Elliptic_curve_cr

yptography

ECDH Elliptic Curve Diffie-Hellman http://en.wikipedia.org/wiki/Elliptic_curve_Di

ffie%E2%80%93Hellman

ECDSA Elliptic Curve Digital Signature

Algorithm

http://en.wikipedia.org/wiki/ECDSA

ECNR Elliptic Curve Nyberg Rueppel http://www.cryptopp.com/wiki/Elliptic_Curve

_Nyberg_Rueppel

ElGamal Key exchange algorithm http://en.wikipedia.org/wiki/ElGamal_encrypti

on

HMAC Hash-based Message

Authentication Code

http://en.wikipedia.org/wiki/HMAC

MAC Message Authentication Code http://en.wikipedia.org/wiki/Message_authenti

cation_code

RSA Rivest-Shamir-Adleman http://en.wikipedia.org/wiki/RSA_%28algorit

hm%29

SHA-1 Secure Hash Algorithm-1 http://en.wikipedia.org/wiki/SHA-1

SHA-2 Secure Hash Algorithm-2 http://en.wikipedia.org/wiki/SHA-2

Triple-

DES

Triple Data Encryption Algorithm http://en.wikipedia.org/wiki/Triple_DES

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Chinese_Remainder_Theorem
http://en.wikipedia.org/wiki/Chinese_Remainder_Theorem
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
http://en.wikipedia.org/wiki/Elliptic_curve_cryptography
http://en.wikipedia.org/wiki/Elliptic_curve_cryptography
http://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
http://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
http://en.wikipedia.org/wiki/ECDSA
http://www.cryptopp.com/wiki/Elliptic_Curve_Nyberg_Rueppel
http://www.cryptopp.com/wiki/Elliptic_Curve_Nyberg_Rueppel
http://en.wikipedia.org/wiki/ElGamal_encryption
http://en.wikipedia.org/wiki/ElGamal_encryption
http://en.wikipedia.org/wiki/HMAC
http://en.wikipedia.org/wiki/Message_authentication_code
http://en.wikipedia.org/wiki/Message_authentication_code
http://en.wikipedia.org/wiki/RSA_%28algorithm%29
http://en.wikipedia.org/wiki/RSA_%28algorithm%29
http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/Triple_DES

