DPA Attacks vs. unknown input: a 1st-order Attack on Counter Modes

Rump Session Talk

CHES 2006

Josh Jaffe Cryptography Research, Inc. www.cryptography.com

575 Market St., 21st Floor, San Francisco, CA 94105

© 2006 Cryptography Research, Inc. All rights reserved. The Cryptography Research logo is a trademark of Cryptography Research, Inc. All trademarks are the property of their respective owners. The information contained in this presentation is provided without any guarantee or warrantee whatsoever.

Context

- This talk outlines a first-order DPA attack on ciphers used in **counter mode**, that works even if the initial counter value and cipher output are unknown.
- When input/output are not known, high-order attacks are traditionally used.
- But this is undesirable (if it can be avoided) because high-order attacks need more traces...

Review of Counter Mode

- Example construction, w/ AES
- $O_i = enc(K, T+i)$
- $\mathbf{C}_{i} = \mathbf{O}_{i} \oplus \mathbf{P}_{i}$

Assume T, Oi, K are unknown

DPA Attack example

- Target: AES in counter mode with unknown input.
 - Galois counter mode, len(IV)!=96
 - Note: This attack works in general, but AES has some structural elements that are particularly helpful.
- Step 0: Collect Measurements
 - Monitor encryptions of 2^{17*} sequential (T+i).
 - * attack could use fewer messages too. E.g. 28.
 - Also, I'm skipping over the fact that you could use an SPA or 1st-order DPA attack to find T value with low byte(s) equal to 00. The attack I actually implemented assumed I had.

 Record power measurements covering at least the first four rounds of each encryption.

DPA attack (review)

- Context for typical DPA attack (e.g. on AES):
 - Known variable X
 - Secret constant K
 - Intermediate derivative I

- For many X, measure power P.
- For each K, predict I_K.
- Calculate $\Delta P/\Delta I_{\kappa}$.
- Test: abs(∆P/∆I_k) >> noise?
- "Yes" indicates that a value correlated to I_K is present; suggests that K is correct.

Analysis (round 1)

- In counter mode the input is T + i, where T is unknown.
- We want a known input X for the DPA attack.
- Solution: Let i be our known 'X'.
 - T is secret, so lets rename it 'K1'.
- We can now perform a DPA attack on this construction:
 - $I = S[(X + K1) \oplus K2]$
 - known X
 - guess K1, K2 and predict I

Round 1 status (graphical)

DPA attack, round 2

- Round 1 attack yields bytes 15 and 16 of the round key and corresponding "K1" values.
 - Correct S-output bytes 15 and 16.
 - SKIP OVER THE REST OF ROUND 1.
 - Assume all unknown constant bytes of input and RK1 are ZERO.
 - Result: a constant error XORed onto MixCols out!
- In Round 2, input block is then:
 - [8 masked bytes] || [8 unknown, constant bytes]
 - Masked bytes X' can be expressed as the XOR of a known value X and an unknown constant C.
 - $X' = X \oplus C$.

- The unknown C's can be pushed into K's!
 - $I = S[X' \oplus K] = S[(X \oplus C) \oplus K] = S[X \oplus (C \oplus K)] = S[X \oplus K']$

- The unknown C's can be pushed into K's!
 - $I = S[X' \oplus K] = S[(X \oplus C) \oplus K] = S[X \oplus (C \oplus K)] = S[X \oplus K']$

- The unknown C's can be pushed into K's!
 - $I = S[X' \oplus K] = S[(X \oplus C) \oplus K] = S[X \oplus (C \oplus K)] = S[X \oplus K']$

- The unknown C's can be pushed into K's!
 - $I = S[X' \oplus K] = S[(X \oplus C) \oplus K] = S[X \oplus (C \oplus K)] = S[X \oplus K']$

Round 2 status (graphical)

Round 2 status (graphical)

The DPA Attack, round 3

- Round 3 input block is:
 - [16 masked bytes]
 - Masked bytes X' can be expressed as the XOR of a known value X and an unknown constant C.
 - $X' = X \oplus C$.
- As in round 2:
 - DPA attack finds $rk3' = rk3 \oplus C$.
 - S output is correct...
- But now we have ALL S-out bytes correct.
- There is no error in the MixCols step... we have the correct input to round 4.

Round 3 status (graphical)

Round 3 status (graphical)

Round 4 status (graphical)

Round 4 status (graphical)

- AES-128: DONE.
- Find the master key by running the key schedule backwards.
- In AES-192 & AES-256, iterate the attack one more round, then get the master key from rk4 and rk5.

Conclusions

In counter mode, DPA attack is efficient in even when counter is not known! *High-Order attack is not needed.*

- Cipher A in counter mode can be thought of as cipher A' with "known input" i.
 - enc_A(key = k; input = T+i) is equivalent to enc_A'(key = {k, T}; input = i).
- If you don't know a constant, you can sometimes ignore it and clean up later – or fold it into another constant.

Bonus Topic: Attacking RSA-CRT

- A simple DPA attack on RSA-CRT involves attacking a modular multiplication.
 - If X is the input, RSA-CRT manipulates X mod P and X mod Q.
 - GCD(X (X mod P), P*Q) = P.
 - Attack goal: find X mod P for some X.
- Attack method:
 - Submit X, X+1, X+2, ...
 - RSA-CRT uses these $(X+i \mod P) \equiv (X \mod P) + i$
 - DPA attack by predicting mult. intermediates

Bonus Topic: Attacking ctr <u>output</u>

- Example: counter mode is being used to encrypt a constant plaintext.
 - $C_i = O_i \oplus P_i$
 - Assume C_i is known.
 - Assume you can repeatedly encrypt the plaintext with different initial counters.

Attack method:

- Request repeated encryptions of P₀.
- DPA attack vs. the cipher output, using C_0 .

$$C_0 = O_0 \oplus P_0 = O_0'.$$

• Use C_0 as the approximation of O_0 , and roll P_0 into the key.

Real attack results...

slides lifted from another deck

(background: AES overview trace)

Real attack results:

- Initialized counter and key w/ unknown random values.
- Set low order 16-bits of counter to 0000h. (without loss of generality.)
- collected 65536 traces over encryptions of incrementing counter values;
 - 31.8GB compressed to 1.85GB.
- Analyzed traces...

Attack step 2. Get rk1'

DPA results graph for bytes 14 & 15, in compact key search form.

- Message format was:
 - M = [14 secret, constant bytes] || [2 byte counter]
- And the approximation (setting unknown bytes of M to 0x00):
- I first determined the bytes of the key that lined up with the two varying bytes of the counter.
 - Byte 14 of rk1 is 0x65.
 - Byte 15 of rk1 is 0x30.

Attack step 3. Go for rk2'

Using rk1' and M' I calculated
the input to round 2 (Y')

the input to round 2 (X').

- DPA attack using X' gave:
 - rk2'[0] = 0x30 or 0x45
 - rk2'[1] = 0x45 or 0x30
 - rk2'[2] = 0x1E
 - rk2'[3] = 0x9F
 - rk2'[4] = 0xD1 or 0x50
 - rk2'[5] = 0x92
 - rk2'[6] = 0x34
 - rk2'[7] = 0x50 or 0xD1
- Other bytes of rk2' are unknown (X' is constant)

Attack step 3a get rk2'

- Inputs to S[0] and S[1] are correlated. So are inputs to S[4] and S[7].
 - The input messages are correlated for these bytes; same byte XORed w/ different constants
 - BOTH values are correct... but for different rk2 bytes.
 - Next step is to determine which is which.

Extra step:	determine
byte order	(use DPA).

Key	Value for rk2'	test1?	test2?
1	45301E9FD1923450000000000000000000	N	Y
2	45301E9F509234D100000000000000000	N	N
3	30451E9FD1923450000000000000000000	Y	Y
4	30451E9F509234D100000000000000000	Y	N

Verification step results (compact) for Correct and Incorrect vals.

Attack step 4

- Pad unknown bytes in rk2' with zeros:
 - rk2'=0x30451E9FD19234500000000000000000
- Use rk2' to predict input to round 3 (i3'), then attack rk3 using i3'.
- Result:
 - rk3' = 0x7A610872DE8FE299708A89A85DD9914D

Attack step 5

- Given fully variable i3' and rk3', compute correct inputs to round 4 – and attack rk4.
- Result:
 - $\text{rk4} = 0 \times 52438 \text{AAD476E016D31EAE1CDAE8E0F3D}$

Finishing the Attack

- Invert AES key schedule to find the base key...
 - $\text{rk4} = 0 \times 52438 \text{AAD} 476 \text{E} 016 \text{D} 31 \text{EAE} 1 \text{CDAE} 8 \text{E} 0 \text{F} 3 \text{D}$
 - rk3 = 0x156B0676152D8BC07684E0A09F64EEF0
 - rk2 = 0xF6C0556800468DB663A96B60E9E00E50
 - rk1 = 0xCC8D5116F686D8DE63EFE6D68A496530
 - KEY = 0xCC8D5116F686D8DE63EFE6D68A496530
 - Bonus step: find out the input counter value. For any message, take the <u>data</u> value in round 4 and run the rounds backwards to find the input.

Conclusions

CONCLUSIONS (1/2)

- DPA Countermeasures will prevent all of these attacks
 - If the implementation is DPA-secure against chosen message attacks, then it will be secure when used in counter mode.
 - If it is NOT DPA-secure against chosen message attacks, then restricting AES input to a counter (i.e. using GCM) does not significantly increase the number of messages needed to extract the key.
 - This is true even when the initial counter value is not known.
 - Surprising result: High-Order attack is not required against AES/GCM, even if AES input is unknown.

CONCLUSIONS (2/2)

There <u>are</u> constructions that are secure even when the AES implementation is not DPA-secure against chosen message attacks.

Example:

Kocher, "Design and Validation Strategies for Obtaining Assurance in Countermeasures to Power Analysis and Related Attacks", 2005 http://www.cryptography.com/resources/whitepapers/DPAValidation.pdf

tinyurl: http://tinyurl.com/k9fhe

END

(fin)