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1. Introduction

Good cryptography requires good random
numbers. This paper evaluates the hardware-
based Intel Random Number Generator (RNG)
for use in cryptographic applications.

Almost all cryptographic protocols require
the generation and use of secret values that must
be unknown to attackers. For example, random
number generators are required to generate
public/private keypairs for asymmetric (public
key) algorithms including RSA, DSA, and
Diffie-Hellman. Keys for symmetric and hybrid
cryptosystems are also generated randomly.
RNGs are also used to create challenges, nonces
(salts), padding bytes, and blinding values. The
one time pad – the only provably-secure
encryption system – uses as much key material
as ciphertext and requires that the keystream be
generated from a truly random process.

Because security protocols rely on the
unpredictability of the keys they use, random
number generators for cryptographic
applications must meet stringent requirements.
The most important is that attackers, including
those who know the RNG design, must not be
able to make any useful predictions about the
RNG outputs. In particular, the apparent entropy
of the RNG output should be as close as
possible to the bit length.

According to Shannon1, the entropy H of
any message or state is:

                                                
1 Shannon, C.E., “A Mathematical Theory of
Communication,” The Bell System Technical Journal,
vol. 27, p. 379-423, July 1948.
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where pi is the probability of state i out of n
possible states and K is an optional constant to
provide units (e.g., )2log(

1 bit). In the case of a

random number generator that produces a k-bit
binary result, pi is the probability that an output

will equal i, where ki 20 <≤ . Thus, for a
perfect random number generator, pi = 2-k and
the entropy of the output is equal to k bits. This
means that all possible outcomes are equally
(un)likely, and on average the information
present in the output cannot be represented in a
sequence shorter than k bits. In contrast, the
entropy of typical English alphabetic text is 1.5
bits per character.2

An RNG for cryptographic applications
should appear to computationally-bounded
adversaries to be close as possible to a perfect
RNG. For this review, we analyze whether there
is any feasible way to distinguish the Intel RNG
from a perfect RNG.

2. Pseudorandomness

Most “random” number sources actually
utilize a pseudorandom generator (PRNG).
PRNGs use deterministic processes to generate
a series of outputs from an initial seed state.
Because the output is purely a function of the
seed data, the actual entropy of the output can
never exceed the entropy of the seed. It can,

                                                
2 Menezes, Oorschot, and Vanstone,
Handbook of Applied Cryptography,
Ch.7, CRC Press, 1997.
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however, be computationally infeasible to
distinguish a good PRNG from a perfect RNG.

For example, a PRNG seeded with 256-bits
of entropy (or one with a 256-bit state) cannot
produce more than 256 bits of true randomness.
An attacker who can guess the seed data can
predict the entire PRNG output. Guessing a 256-
bit seed value is computationally infeasible,
however, so it is possible that such a PRNG
could be used in cryptographic applications.
Examples of PRNGs designed for cryptographic
applications include MD5Random and
SHA1Random (which respectively hold 128 bits
and 160 bits of state) in the BSAFETM,3

cryptographic toolkit.

Although properly-implemented and seeded
PRNGs are suitable for most cryptographic
applications, great care must be taken in the
development, testing, and selection of PRNG
algorithms. It is critical that a PRNG be properly
seeded from a reliable source. For example,
most PRNGs included in standard software
libraries use predictable seed or state values or
produce output that can be distinguished from
random data.

3. The Need for TRNGs

A true random number generator (TRNG)
uses a non-deterministic source to produce
randomness. Most operate by measuring
unpredictable natural processes, such as thermal
(resistance or shot) noise, atmospheric noise, or
nuclear decay. The entropy, trustworthiness, and
performance all depend on the TRNG design.

A PRNG by itself will be insecure without a
TRNG for seeding. Seeding requires a source of
true randomness, since it is impossible to create
true randomness from within a deterministic
system.

On computers without a hardware RNG,
programmers typically try to obtain entropy for
seed data using existing peripherals. The most
common techniques involve timing user

                                                
3 BSAFE is a software toolkit available from RSA
Data Security, Inc.

processes, but these methods are awkward and
slow. For example, PGP4 version 6.02 requires
that users spend about 15 seconds entering
random keystrokes or mouse movements to
produce a new key. Methods involving user
timing require inelegant user interfaces and
cannot be used (or become insecure) when
controlled by automated scripts. Some
applications use hard drive seek times, but
factors such as the drive technology, disk
caches, and system timer resolution limits
require careful consideration. Measurements of
system activity, delays, configuration data, etc.
are also sometimes used.

Overall, true random number generators
implemented using conventional hardware tend
to be slow, difficult to implement, require user
involvement, and often provide unknown
amounts of true entropy. These methods also
make assumptions about the hardware that are
not guaranteed. For example, operation timing
measurements may not contain the expected
amount of randomness under all system
configurations. Techniques that rely on user
events may not be reliable in unattended
systems such as
servers.

Even though
it is possible for
applications to
produce their own
secure random
data, many do not.
Reviews by
Cryptography Research frequently identify
weaknesses in random number generation.
Similarly, Christopher Allen and Tim Dierks of
Consensus Development report that “most
common problems [found in software security
reviews] were related to random number
seeding.”5 Bruce Schneier writes, “Good
random-number generators are hard to design,
because their security often depends on the

                                                
4 PGP is available from Network Associates, Inc.
5 Dierks, T., and Allen, C., “Lessons from Doing
Source Code Reviews of Commercial Products,”
Consensus Development, 1997.

Anyone who considers
arithmetical methods of
producing random digits
is, of course, in a state of
sin.
     – John Von Neumann (1951)
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particulars of the hardware and
software. Many products we
examine use bad ones.”6

Ian Goldberg and David
Wagner found that Netscape’s
random number generator seed
was derived from “just three
quantities: the time of day, the
process ID, and the parent process
ID. Thus, an adversary who can
predict these three values can
apply the well-known MD5
algorithm to compute the exact
seed generated.”7 Although most
RNG flaws are not reported,
problems are common, partly
because cryptographic software libraries often
leave it to programmers to find reliable sources
of seed material.

In many cases, system designers are faced
with a trade-off between security and
convenience. For example, to avoid having to
collect fresh seed data each time the program
loads, many software applications store their
seed material on the hard drive where there can
be a risk of compromise. The best sources for
unpredictable data involve timing user
processes, which add undesirable complexity to
user interfaces.

4. Architecture Analysis

Measuring randomness is as much a
philosophical debate as it is a mathematical
issue. An infinite sequence of random numbers
will carry a known statistical distribution. It is
impossible, however, to prove whether any
finite set of numbers is actually random. For
example, the 128-bit value “0” is just as likely to
occur as hexadecimal “7c26b1b7f931eedb1f7e-
e1b84764ae93”. Although it is impossible to

                                                
6 Schneier, B., “Security Pitfalls in Cryptography,”
Counterpane Systems, 1998.
7 Goldberg, I. and Wagner, D.,  “Randomness in the
Netscape Browser,” Dr. Dobb’s Journal, January
1996.

prove randomness, we have analyzed Intel’s
design assumptions, design, and testing
procedures, as well as performed statistical tests
on RNG output data.

For this review, Cryptography Research
performed a series of tests and evaluated the
results of experiments performed by Intel. Raw
data and design specifications for the analysis
were provided by Intel.

4.1. Noise Source

Johnson noise (commonly referred to as
thermal noise), shot noise, and flicker noise are
present in all resistors. They have electrically
measurable characteristics and are the result of
random electron and material behavior.

The Intel RNG primarily samples thermal
noise by amplifying the voltage measured across
undriven resistors. In addition to a large random
component, these measurements are correlated
to local pseudorandom environmental
characteristics8, such as electromagentic
radiation, temperature, and power supply
fluctuations. The Intel RNG significantly
reduces the coupled component by subtracting

                                                
8 For an introduction to physical noise sources and
externally coupled noise sources, see section  7.11 of
Horowitz, P. and Hill, W.,  The Art of Electronics;
Cambridge, MA: Cambridge University Press, 1980.
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     Figure 1: Block diagram of the Intel RNG
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the signals sampled from two adjacent resistors.
Circuitry used for amplification or signal

handling should preserve as many of the
components of randomness as possible. Intel’s
design was found to have a high degree of
linearity and bandwidth for passing high
frequency signals to later stages.

4.2. Dual Oscillator Architecture

The Intel RNG uses a random source that is
derived from two free-running oscillators, one
fast and one much slower. The thermal noise
source is used to modulate the frequency of the
slower clock. The variable, noise-modulated
slower clock is used to trigger measurements of
the fast clock. Drift between the two clocks thus
provides the source of random binary digits.
Similar RNG designs using independent
oscillators are well known.9,10

Thermal  No ise

Low- f requency
osci l lator

High-f requency osci l la tor

0

1

Data to corrector  = 1

Figure 2: Overview of dual-oscillator design (frequency
ratio not to scale)

The slow oscillator frequency must be
significantly perturbed by the noise source, in
addition to any pseudorandom environmental,
electrical, or manufacturing conditions.
Recorded histograms of modulated frequency

                                                
9 Velichko, S. “Random-number Generator Prefers
Imperfect Clocks.”  EDN Access, 1996.
 (http://ednmag.com/reg/1996/112196/23_di04.cfm).
10 Hoffman, Eric. Random Number Generator, 1996,
U.S. Patent 5,706,208.

resemble a normal distribution. The modulated
frequency has standard deviation that spans
approximately 10-20 high frequency clock
periods; indicating that the sampling process is
significantly varied by the random source.
Provided that a significant random component is
present in the low-speed oscillator, additional
nonrandom effects should not reduce the quality
of the RNG output. For example, environmental
interference should only add additional
unpredictability to the results. Intel reports that
the modulation bandwidth  is approximately 2
times the variable oscillator’s center frequency.
This fast response preserves useful components
of high frequency noise from the random
source.

The oscillators used in the Intel RNG have
center frequency ratios on the order of 1:100. If
both run without drift, the sampled bits could be
“colored” with beats periodicity at multiples of
the ratio. Statistical tests were used to try to
locate such beats in the sampled bitstream, but
could not be detected in over 108 output bits.

4.3. Digital Post-Processing

The initial random measurements are
processed by a hardware corrector based on a
concept proposed by John von Neumann to
produce a balanced distribution of “0” and “1”
bits.11 A von Neumann corrector converts pairs
of bits into output bits by converting the bit pair
[0,1] into an output 1, converting [1,0] into an
output 0, and outputting nothing for [0,0] or
[1,1].

  Input bits  Output
  0,0   none
  0,1   1
  1,0   0
  1,1   none

Figure 3: Von Neumann corrector

                                                
11 The hardware corrector design is patent pending by
Intel Corporation.
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The corrector is a simple way to
generate statistically balanced outputs
from data with residual bias. In particular,
the corrector prevents imbalances in the
fast clock’s duty cycle from biasing the
output. Intel has enhanced the von
Neumann corrector to reduce the effect of
any bit to bit correlations that might exist
in the dual oscillator source.

One consequence of the corrector is
that the RNG has a variable bitrate. The
corrector generates an average of one bit
for every 6 raw binary samples. The
RNG’s exceptional performance (over 75
Kbit/sec after the corrector) exceeds the TRNG
requirements for all standard cryptographic
applications, but the variable rate could
complicate some esoteric usage scenarios. While
it is not possible to prove that the RNG will
produce an output bit in any finite time period,
the probability of a long delay is negligibly
small.

Corrector output is queued in a 32-bit
register and provided to the software layer. The
interface assures that random outputs cannot be
read twice and that each read operation returns
fresh random data.

4.4. Statistical Evaluation

Because subtle output correlations are
always a possibility, the verification process has
included a wide array of statistical tests by
Cryptography Research and by Intel. These tests
are designed to detect nonrandom characteristics
by comparing statistical distributions in large
samples of actual RNG outputs against
distributions expected from a perfect random
source.

Tests were performed both before and after
the digital post-processing. Tests on pre-
corrected data help to identify characteristics
that might be difficult to detect after the
correction process. All statistical tests were
performed on data prior to the software library’s
SHA-1 mixing, as the SHA operation would
mask nonrandom characteristics.

A large number of generalized statistical
tests for randomness have been proposed, such
as the DIEHARD

12 specification, FIPS 140-113,
and Knuth’s14 tests. The test suite for the Intel
RNG included the following:

� Block Means Spectral analyses
� Random walk test
� Block Mean correlations, 1-129
� Block means
� Periodogram
� Spectral analyses; hi, med, lo smoothing
� Spectral analyses, adjusted for correlations
� Autocorrelations, blocking and no blocking
� 8,16-bit Maurer test
� 4,8,16-bit Monkey test
� 4,8,16-bit Goodness of Fit
� Komolgorov-Smirnov test of trend
� CR/LF test
� Overall mean
� Column means
� Run length variances
� FIPS 140-1 test suite

Tests were performed on at least 80
megabits of continuous RNG output. Major tests
such as the autocorrelation and bit frequency
tests were run at a variety of extreme

                                                
12 Marsaglia, George. DIEHARD Statistical Tests,
Florida State University.
13 Federal Information Processing Standards
Publication 140-1, “Security Requirements for
Cryptographic Modules,” U.S. Department of
Commerce/NIST, Springfield, VA: NTIS, 1994.
14 Knuth, Donald E.  The Art of Computer
Programming: Seminumerical Algorithms, Vol. 2,
ch. 3, Addison Wesley Longman, 1998.

Is there any hope for strong portable randomness in the future?
There might be. All that's needed is a physical source of
unpredictable numbers. A thermal noise or radioactive decay
source and a fast, free-running oscillator would do the trick
directly.  This is a trivial amount of hardware, and could easily
be included as a standard part of a computer system's
architecture… All that's needed is the common perception
among computer vendors that this small additional hardware
and the software to access it is necessary and useful.
    – Eastlake, Crocker, and Schiller , “RFC 1750: Randomness
       Recommendations for Security,” IETF Network Working
       Group, December 1994.
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environmental conditions and on devices
produced at extremes of manufacturing process
parameters. All of these tests were performed at
confidence level of 1% and 5%. The only tests
identifying any statistically significant deviation
from values expected from a perfect random
source were minor deviations in tests involving
spectral analysis.

The analysis by Cryptography Research
placed particular emphasis on areas that would
identify statistical biases or failure modes in the
RNG. Cryptography Research performed tests to
detect biases in pre- corrector data.

As expected, significant biases are present
before the corrector. By far the largest
nonrandom characteristic detected was the bias
in the ratio of “0” and “1” bits. In devices
operating under extreme environmental
conditions, bit frequencies were observed on the
order of .5±10-2. Data with a 1% bias has 0.9997
bits of entropy per bit. Higher biases are
possible under other conditions or
manufacturing parameters, but the von Neumann
corrector will improve the output quality.

Applications directly accessing the RNG
should make more conservative assumptions
about the output quality. Although our estimates
indicate that the hardware provides over 0.999
bits of entropy per output bit, a conservative
assumption of ½ bit of entropy per output bit
can generally be used without any significant
performance impact.

4.5. Software Architecture

The Intel software library uses a mixing
function based on the Secure Hash Algorithm
(SHA-1).15 SHA-1 constructions are widely
used, are recommended in a number of literature
sources16,17,18, and are believed to be very strong.

                                                
15 Federal Information Processing Standards
Publication 180-1, “Secure Hash Standard,” U.S.
Department of Commerce/NIST, Springfield, VA:
NTIS, 1995.
16 Ellison, C.,  “Cryptographic Random Numbers”,
http://www.clark.net/pub/cme/P1363/ranno.html.

SHA-1 is an effective mixer because it
combines variable size inputs to generate
independent output bits with excellent statistical
distributions. The cryptographic properties of
SHA destroy any remaining statistical structure
and make it computationally infeasible to
recover the seed state.

The Intel Security Driver uses a SHA-1
mixer with 512 bits of state. The SHA-1
construction cryptographically combines all
RNG output since SDK initialization. To
produce each 32-bit output, 32 bits of fresh data
from the RNG are supplied to the mixing
function, as diagrammed below. The addition of
new random output reflects solid conservative
approach, but is not necessary as the cycle
length of the mixing function should exceed
2200.

Start ing state (64-bytes = 16 words)

CopyHash
(SHA-1)

Input to
mix process

Discard

New state

R N G
output

Figure 4: SHA-1 mixer design

Cryptography Research has performed a
review of the SHA-1 code, and has tested the
implementation of the SHA-1 and mixer.

                                                                        

17 Eastlake, Crocker, and Schiller, “RFC 1750:
Randomness Recommendations for Security,” IETF
Network Working Group, December 1994.
18 Federal Information Processing Standards
Publication 186, “Digital Signature Standard,” U.S.
Department of Commerce/NIST, Springfield, VA:
NTIS, 1994.
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4.6. Operational Testing

Intel’s manufacturing and test process is
designed to detect most component failures. As
such, chances of independent RNG field failure
should be very low. In situations where system
security requires good randomness, careful
testing and analysis of failure modes is
advisable. For example, particularly sensitive
applications can independently test the integrity
of the random source.

In the specific case of the Intel RNG, we
believe the most likely failure modes cause the
output to be “stuck” in one state (e.g., stuck on),
causing no output from the von Neumann
corrector. Failures could also cause the output
from the corrector to stick in a fixed state. An
oscillating state (which would produce an output
of 101010101…) is theoretically possible but
unlikely. Partial failures are more difficult to
detect19 and could reduce the entropy of the
output, but many such faults would be fixed by
the corrector.

Intel specifies that all hardware RNG units
must pass the FIPS 140-1 randomness tests at
time of manufacture. For added assurance, the
Intel Security Driver also performs the RNG
self-tests defined in the FIPS 140-1
cryptographic specification (monobit, runs, and
poker) when the RNG is initialized. If desired,
additional tests could be performed, but the
existing test suite should detect most failures.

Many aspects of a system’s operational
security are, of course, beyond the scope of this
review. While a good RNG is needed for good
cryptographic security, other parts of a system
can also fail. For example, properly seeding a
defective PRNG does not provide a secure

                                                
19 Knuth, D.E.  The Art of Computer Programming:
Seminumerical Algorithms, Vol. 2, ch. 3, Addison
Wesley Longman, 1998.

solution. It is also not possible to guarantee that
manufacturing flaws, intentional sabotage, and
other unexpected failures will never occur.

5. Conclusions

In producing the RNG, Intel applied
conservative design, implementation, and
testing approaches. Design assumptions about
the random source, sampling method, system
consistency, and algorithm appear appropriate.
Careful attention was paid to analyze and avoid
likely failure modes.

We believe that the Intel RNG is well-suited
for use in cryptographic applications. Direct use
of Intel’s software libraries should simplify the
design and evaluation process for security
products. Alternatively, developers can combine
data from the Intel RNG with data from other
sources. For example, data from the Intel RNG
can be safely exclusive-ORed with output from
any independent RNG. The Intel RNG will help
designers avoid relying on proprietary entropy
gathering techniques in critical security
routines. We believe the Intel RNG will prevent
many RNG failures and improve the integrity
and security of cryptographic applications.

Cryptographically, we believe that the Intel
RNG is strong and that it is unlikely that any
computationally feasible test will be found to
distinguish data produced by Intel’s RNG
library from output from a perfect RNG. As a
result, we believe that the RNG is by far the
most reliable source of secure random data
available in the PC.   
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Cryptography Research provides technology
and services to companies that build and use
cryptography products. The company has a
strong technical focus and is active in many
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alone, systems designed by Cryptography
Research engineers protected more than a
billion dollars of commerce and secured
communications for financial, wireless,
telecommunications, digital television, and
Internet industries.
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