
Copyright 2008 Cryptography Research, Inc.

Protecting Consumer Electronics
Benjamin Jun     |     Cryptography Research, Inc.     |     8 April 2008     |     HT1-108

Protecting consumer electronics

• Probing tools

• Information leakage

• Fault induction

• Boot attacks

• Consumer electronics threats

• Learning from open-source



Copyright 2008 Cryptography Research, Inc.

Consumer electronics threats

• Obtain “unauthorized” access to asset

– Pirated digital content

• Interact with “unauthorized” device/service

– Use of non-authentic peripheral

• Make device execute “unauthorized” code

– Enable unauthorized features, linux

• Clone a device

– Unauthorized copy

Consumer electronics threats

• Obtain “unauthorized” access to asset

– Pirated digital content

• Interact with “unauthorized” device/service

– Use of non-authentic peripheral

• Make device execute “unauthorized” code

– Enable unauthorized features, linux

• Clone a device

– Unauthorized copy

Unauthorized toner chip

“RAZR V3” Battery



Copyright 2008 Cryptography Research, Inc.

Consumer electronics threats

• Obtain “unauthorized” access to asset

– Pirated digital content

• Interact with “unauthorized” device/service

– Use of non-authentic peripheral

• Make device execute “unauthorized” code

– Enable unauthorized features, linux

• Clone a device

– Unauthorized copy

Consumer electronics threats

• Obtain “unauthorized” access to asset

– Pirated digital content

• Interact with “unauthorized” device/service

– Use of non-authentic peripheral

• Make device execute “unauthorized” code

– Enable unauthorized features, linux

• Clone a device

– Unauthorized copy

Starting car w/ DST simulator

Pay TV smartcard emulator 

Source: “Security Analysis of a Cryptographically-Enabled RFID 

Device”, Bono, Green, Stubblefield, Juels, Rubin, Szydlo, 1/29/2005



Copyright 2008 Cryptography Research, Inc.

Who am I?  What do I do?

• Cryptography Research, Inc.

– Solve fraud, piracy problems

– R&D emphasis on applied security issues

• Design and evaluation services

• License security technologies

DPA:
Tamper Resistance

CryptoFirewall:
Pay-TV Security

SPDC / BD+: 
Renewable Security
for Digital Content

Try this at home!

Learn from open-source embedded projects



Copyright 2008 Cryptography Research, Inc.

Looking to open-source embedded projects

• Not (really) a security compromise…

– Learn about techniques to gain control of and use HW 

– Reverse engineering is a key part of project efforts

• Good engineering lessons

– Fast way to explore deployed embedded environments

– Good fun!  Good return on $ + time.

Linksys WRT54GL

• $60 home wireless router

– Linksys released open source SW (2003)

• Why modify?

– Modify operating parameters (xmit power, etc.) 

– Add more firewall setttings, mesh networking,          
QoS, use metering, etc.

– Linux on cheap, low power platform

• Thriving hobbyist community 

– DD-WRT (www.dd-wrt.com)

– OpenWRT (www.openwrt.org)

– Note: buy the WRT54GL

Linksys (Cisco Systems)
The Consolidated Hacking Guide For The Linksys 
WRT54GL, “ByteEnable”, www.linuxelectrons.com



Copyright 2008 Cryptography Research, Inc.

FW reflash of Linksys WRT54GL

• Example: Upgrade to OpenWRT firmware
– Download OpenWRT whiterussian rc5, squash fs

http://downloads.openwrt.org/whiterussian/rc5/bin/openwrt-wrt54g-squashfs.bin

– Use (unsecured) firmware update mechanism

– Router reboots, use www interface to set root pw

– SSH in!

OpenWRT FW: whiterussian rc5, squash FS

ASCII: “W54G” Version 4.30.12Build date: 2007 Dec 14

ASCII: “HDR0”

Offset to start of kernel from .TRX header

32-bit CRC

Stock Linksys FW:  “4.30.12 1/10/2008”

Try this: NSLU2

• Linksys NSLU2

– Ethernet SMB (Windows) fileserver for USB disks ($70)

• NSLU-linux project (www.nslu2-linux.org)

– Unslung distribution keeps stock Linksys functionality 

– Disk makes it easy to experiment with

• HW mods

– Overclocking, serial port, RAM upgrade, debug ports, etc.

http://www.nslu2-linux.org/wiki/HowTo/AddAThirtyFourPinUniversalConnector  http://www.nslu2-linux.org/wiki/HowTo/OverClockTheSlug  David Hicks, http://www.nslu2-linux.org/wiki/HowTo/AddInternalWireless



Copyright 2008 Cryptography Research, Inc.

No surprise to embedded developers…

• Nearly all products based on commodity cores, reference designs

– WRT54GL: Broadcom BCM5352E

– NSLU2: Intel IXP420 XScale (ARM)

• Small number of widely used embedded development environments

– Linux, uC Linux, VxWorks

– Good development, cross-compilation, debugging tools

• Hardware is incrementally “free”

– Differentiating features governed by software

– Software modifications have interesting results!

Why follow these projects?

• Infrastructure type projects

– “Boot linux on ____ platform.”

– Understand debugging, porting tools

• Patch type projects

– “Get in, get system to do ____, get out.”

– SW reverse engineering

• Hardware extension projects

– HW reverse engineering 



Copyright 2008 Cryptography Research, Inc.

Probing

Probing goals

• Goal: Gather enough information for analysis

– Reverse engineering is about making hypotheses

– … and finding ways to confirm them !

• Static analysis

– Use disassemblers and static analysis tools

• Probe system as it responds to stimuli

– In normal processing

– In abnormal processing



Copyright 2008 Cryptography Research, Inc.

Static reading of flash / ROM

• For discrete parts, this is easy…
– Use ROM reader

– Tap data bus, drive address bus

• On-die ROM
– Get software to read it!

• With a code dump…
– Recognize processor type

– Disassemble, probe for 
implementation weakness

– Search for keys (high entropy)

Conitec GALEP-4 progammer/reader

Probing tools

GPIB Oscilloscope + Logic Analyzer
Agilent Technologies, 1672G data page

Custom FPGA Logic Analyzer
Bunnie Huang, http://www.xenatera.com/bunnie/proj/anatak/xboxmod.html

SCSI Bus Analyzer
Cryptography Research

IC test clip (PLCC)
Emulation Technology Part 5281



Copyright 2008 Cryptography Research, Inc.

Countermeaures to probing

• Bury vias

– “Production” mods harder, one-time probing still doable…

• Use “encrypted” memory

– Use global or unique key

– If keys managed by SW, this is essential

– … but difficult to rely on with many copies of identical data

• Hardcode keys + algorithms + processing

– Integrity + privacy benefits

– Good: In SoC ROM

– Better: In HW gates

Die imaging: ROM

• Imaging on-die ROM

– Optical microscope / FIB: Use 
automated tool to image ROM

– Active probing: Tap data bus, 
drive address bus

– Passive probing: Tap bus lines

• Responses
– Shield metal layers

– “Encrypted” memory

– HW-based obfuscation

Memory image: Hector Vega
FIB: University of Cambridge Department of Materials Science Device Materials Group



Copyright 2008 Cryptography Research, Inc.

Die imaging: Gates

• Imaging attacks on gates
– Automated tool to image + 

recover netlist

– Easier if crypto area small, design 
has good structure

– One reference: Nohl, Starbug, 
Plotz, Mifare Security, CCC 2007

• Responses
– Shield layers

– Camouflage libraries

– If imaging not 100% accurate…

http://www.ece.cmu.edu/~koopman/stack_computers/binar_chip.jpg
Nohl, Starbug, Plotz, Mifare Security, CCC 2007

Example: Entropic Array

• State-of-the-art reverse engineering techniques 
are error-prone

– Attacks involve human interpretation + correction

– For normal circuits, attackers do fine w/buggy 
output

– Example: AES with a few errors is obviously AES

• Goal: make imperfect reverse engineering 
results useless

– Exact circuit required to perform crypto correctly

• Attackers can’t infer where they made mistakes

– EA designed to be difficult to interpret

• “Grown” from design rules and random seed

• Internal entropy / lack of structure

US patent 6,640,305

Example EA



Copyright 2008 Cryptography Research, Inc.

Information Leakage
Attacks

Mangard, Oswald, Popp

www.dpabook.org

Information leakage

Integrated circuits consume power as they operate.

Typical MOS Transistor



Copyright 2008 Cryptography Research, Inc.

Simple Power Analysis (SPA)

S S M S S M S S S S S S S M S S M S S M S S S M S S M S M S M S S M S S S M S M S M
S S M S S M S S S S S S S M S S M S S M S S S M S S M S M S M S S M S S S M S M S M

LOOP SQUARE

CONDITIONAL MULT

EXPONENT!

Differential Power Analysis (DPA)

• To read more about DPA
– www.cryptography.com/dpa

– www.dpabook.org

Correct guess g for Kj

Incorrect guess g for Kj

Mean of all traces



Copyright 2008 Cryptography Research, Inc.

Hybrid attacks

• Use power consumption as an output channel

• Code insertion

– Buffer overflow loads + executes target code

• For each bit of data

– Perform instruction A or instruction B 256 times

– Dump memory via SPA activity

Defenses against power analysis

• Categories 

• Certifications / Requirements
– FIPS 140-3 draft

– Common Criteria

– CAC, E-Passport, HSPD-12

• Complicated!
– Naïve CM can make things worse

– Device evaluation is important

Cryptography Research

– Obfuscation

– Leak Reduction

– Balanced HW / SW

– Amplitude & Temporal Noise

– Incorporating Randomness

– Protocol Level CM

Use of these countermeasures requires a license from Cryptography Research and is protected under US patents 6,278,783, 6,298,442, 

6,304,658, 6,327,661, 6,510,518, 6,539,092, 6,654,884 and other patents issued and pending in the US and worldwide.



Copyright 2008 Cryptography Research, Inc.

Fault Induction
Attacks

Van de Graff (left)

US Smithsonian Institution

Why induce faults?

• Security code (generally) assumes that platform is reliable

– What if it isn’t?  

Glitch impulse & power trace during
successfully-glitched RSA CRT

Cryptography Research, Inc.

• Why do this?

– Induce a computational fault

– Change value being read/stored 

– Break into/out of an execution loop

– Change program counter (PC)

• Surprises

– More repeatable than you think…



Copyright 2008 Cryptography Research, Inc.

Tearing nonvolatile memory writes

• Typical EEPROM write/clear cycles

write #1

write #2
RESET

Device 1: Bit Clearing Phase (A) and Bit Setting Phase (B) Device 2: Bit Setting Phase (A) and Bit Clearing Phase (B)

A            B

• Tearing example

Cryptography Research, Inc.

Glitching tools



Copyright 2008 Cryptography Research, Inc.

Glitching examples

• Glitch instruction to extend output loop
– Example: DJNZ instruction

• Glitching program counter
– “Serpent’s tail”: NOP sled followed by target code

; This routine is used to output a 4-byte result

; DPTR points to first byte of data

result_out:  MOV R0, 3             ; set loop counter

result_loop: CALL #putch ; call UART routine

INC DPTR              ; increment pointer

DJNZ R0, #result_loop ; conditional loop

RET

Example glitch defenses (SW)

• Check your work!
– Verify private key computations

• Preincrement error flags

if (nvmErrorCount++ > errorMax)

lockOut();

result = secureMemCmp(passwordLen, userPin, userInput);

if (!result)

nvmErrorCount = 0;

return (result);

// check password

result = secureMemCmp(passwordLen, userPin, userInput);

if (result)

nvmErrorCount = 0;

else if (++nvmErrorCount > errorMax)

lockOut();

return (result);

Before

After



Copyright 2008 Cryptography Research, Inc.

Example glitch defenses (HW)

• Environmental sensors

– Monitor clock, voltage

– Not available in all silicon processes

• Independent votes

– Independent modules vote before enabling output, unlock

• Canary logic (CryptoFirewall)

– Cumulative hash of system control state on every clock

– Hardware design element designed to be on critical path

– Example: Gate output unless canary logic permits operation

Canaries used to detect CO gas in mines 
(Hollinger Mine, Ontario, 1928 )

Boot Attacks

“Let's start at the very beginning

A very good place to start

When you read you begin with A-B-C

When you sing you begin with do-re-mi”

– Maria

Rodgers, Hammerstein, The Sound of Music (1965)



Copyright 2008 Cryptography Research, Inc.

37

Taking over a device

• Step 1: Understand how device operates

• Step 2: Get (malicious) code on the device

• Step 3: Get control of program counter (PC)

Getting to execution – ROM/flash replacement

• Socketed flash/ROM

• ROM / flash emulator

BIOS socket (X-Box)
Bunnie Huang, xenatera.com

ROM emulator
Transtronics Pocket ROMulator

DIP to PLCC adaptor
Logical systems, www.logicalsys.com

Flash emulator
MSC AT51Flash-Emulator



Copyright 2008 Cryptography Research, Inc.

Getting to execution – debug tools

• JTAG analyzer

– Full debug interface

– Boot code replacement

– In-target flash/ROM reading + programming

EJTAG In-target analyzer
First Silicon Solutions, ISA-MIPS

ARM JTAG debugger interface
Olimex Ltd., ARM-USB-OCD

Getting to execution – taking over control

• Take over control directly

– Buffer overflow, glitch to executable code, protocol errors, …

– Suspend/resume with memory image change

• Bypass authentication in bootloader

– Bypass authentication process (CRC, signature)

• Common problem: bad authentication protocol

– Ex: “Savegame” buffer overflow in “007” Xbox game (2003)

• Modifies public key, makes modulus divisible by 3

• Signature forgery, clean start sequence!

http://xbox-linux.sourceforge.net/docs/007analysis.html



Copyright 2008 Cryptography Research, Inc.

HW tools for boot protection

• ARM TrustZone
– Lightweight hardware extensions for security

• S-Bit added to CP15 register

• SMI (Secure monitor interrupt) instruction

– Only privileged OS can issue SMI

– Non-secure processes have limited privileges

• MIPS Safe-SOC
– Peripheral on MIPS coprocessor bus

– Crypto accelerator with access to memory space

• Cautions
– Monitor and secure kernel should be small

– Watch out for complexity!

ARM TrustZone Architecture

MIPS Safe-SOC Architecture

ARM, MIPS product literature

Example: Bootloader with code signatures

• Boot ROM with code authentication

– Reset vector jumps to boot ROM

– Verify RSA cert (hash of PK can be hard-coded)

– Hash and verify payload, FAIL on error

– Decrypt + decompress payload to RAM

– Clear all other RAM

– Jump to payload

• HW requirements

– Force jump to internal boot ROM on reset

– JTAG and other execution vectors should be off on boot

– Development/test: skip bootloader if fuse unblown



Copyright 2008 Cryptography Research, Inc.

Example: Continuous code checking

• HW requirements

– Watchdog that can only be started by code in boot ROM area

– Requires protected RAM or dirty bit that is set on interrupt

• Continuous verification

– Boot ROM starts watchdog timer

– Background code scanning process

• Steps through program RAM & computes hash

• Restart timer if code check passes

– Code scanning is interruptible

• Halt & restart completely if interrupted

• Can work on smaller chunks of code

– Verify one branch of a hash tree at a time

Bootloader challenges

• Challenges

– Enabling development environment

– Support for powerdown / sleep modes

– MMU behavior as system boots

• “Cat and mouse”

– Example: smartcard code hashing and 
emulators Checkpoint Charlie (1986)



Copyright 2008 Cryptography Research, Inc.

Where do we go from here?

Conclusion

• Most consumer electronics devices:
– Are in physical possession by attacker

– Have flat memory architectures

– Are used offline

• Developer tools == attacker tools
– Most systems use standard platforms + tools

– Good debuggers and debugging interfaces

• HW and SW can’t do this alone!
– SW can enable functionality, handle updates

– HW can enforce small set of rigid rules



Copyright 2008 Cryptography Research, Inc.

We’re hiring! 

If you are technically strong and want to work on challenging 
crypto and security problems, please send a resume!

Contact Information
For more information, or to discuss how Cryptography 
Research can help with a security problem:

© 1998-2008 Cryptography Research, Inc. (CRI)  Portions may be protected under issued and/or pending US and/or international patents.  A separate license from CRI is 
required for the CryptoFirewall™, DPA Countermeasures, and Self-Protecting Digital Content™.  All trademarks are the property of their respective owners.  The 
information contained in this presentation is provided for illustrative purposes only, and is provided without any guarantee or warranty whatsoever, and does not 

necessarily represent official opinions of CRI or its partners.

Benjamin Jun
ben@cryptography.com
415.397.0123

www.cryptography.com


