
Security Remodeling: 10 Ways to Retrofit Your Transactional System

1Copyright © 2006-2007 Cryptography Research, Inc.

Security Remodeling: 10 Ways to

Retrofit Your Transactional System

Benjamin Jun

VP of Technology

Cryptography Research, Inc.

2 February 2007 – DEV-201

System Life Cycle

ABC, Inc.; This Old House Ventures, Inc.; PBS

Security Remodeling: 10 Ways to Retrofit Your Transactional System

2Copyright © 2006-2007 Cryptography Research, Inc.

Today’s Talk

• Our focus is client-server, transaction based systems

— Living with legacy design decisions

• Consider incremental changes that can:
— Reduce your vulnerability cross section

— Improve the reviewability of your design

— Contain the impact of a breech

“You go to war with the Army you have. They're not the

Army you might want or wish to have at a later time”
– Former Defense Secretary Donald Rumsfeld, 2004

Who am I? What do I do?

• Cryptography Research, Inc.
— Solve complex fraud, piracy problems

— R&D emphasis on applied security issues

• Design and Evaluation Services

• License Security Technologies

DPA:

Tamper Resistance

CryptoFirewall:

Pay-TV Security

SPDC / BD+:

Renewable Security

for Digital Content

Security Remodeling: 10 Ways to Retrofit Your Transactional System

3Copyright © 2006-2007 Cryptography Research, Inc.

Evaluating Retrofit Suggestions

• Check your foundation
— Are your security concerns well-articulated?

— Can you map your concerns to implementation?

(Threat & risk assessment / SPF)

• Evaluating retrofit suggestions
— Does this reduce my risk?

— Can this change focus future security efforts?

— Do I need to understand my security

needs/risks in this area better?

This Old House Ventures, Inc.

• Cautions
— There may be faster paths to regulatory compliance

— Can distract security team from important infrastructural changes

1. Refresh Documentation (1/2)

• Good documentation improves reviewability

— Threats, design requirements, and architecture clearly stated

— Designers, reviewers, and implementers should be able to invest

resources on security critical portions of the design

• Good documentation improves implementation robustness

— Implementers do not need to infer required checks and functional

restrictions

— Handling of security conditions defined across all operating extremes

Security-sensitive specifications avoid:

• Ambiguity: pushes critical security decisions downstream

• Complexity: increases the # of potential surprises (bugs ≅ LOC2)

Security Remodeling: 10 Ways to Retrofit Your Transactional System

4Copyright © 2006-2007 Cryptography Research, Inc.

1. Refresh Documentation (2/2)

• The best use of your time may be to provide security-relevant
documentation of your legacy system

— Perform code review in conjunction with your documentation

• Specs often only focus on the operational sequence and need to
precisely define these areas:

Computational

Process

H
A
V
E

SAY

D
O

System

State

Communication

Protocol

Cryptography Research, Inc.

— Protocols: Messages,

sequences, bounds checking,

preserved state across I/O

— Data structures: Strict data

structure definitions + access

control requirements

— State machines: Error, exit

handling

2. Improve State Handling (1/2)

• Web applications can carry a large amount of transaction state

— Load balancing tools, application servers, don’t help

• Security implications

— Clients enter state with enhanced privileges

— Transactions complete “improperly”

• Can we centralize/simplify state management?

— Pay special attention to what is not specified well

in your documentation

— Can you improve error handling? Can you use a

smaller number of well placed, robust error

handlers?

— Pay special attention to DB reads

Security Remodeling: 10 Ways to Retrofit Your Transactional System

5Copyright © 2006-2007 Cryptography Research, Inc.

2. Improve State Handling (2/2)

• Employ a “transaction supervisor”

— Provide an application API for all transactions

— A choke point

— Secondary transaction control that includes

additional security checks and logging

• Harden existing transaction server

— Add additional session state checks. Map to

anticipated vulnerabilities/partitioning violations.

— Example: include “strict” flag that performs

additional checks on transaction state

“Transaction Funnel”

(Google analytics)

• Starting from scratch
— Add shim for API calls to intercept/monitor transaction flow

— Insert exception logging and rule engine

3. Build an Audit Server (1/2)

• Logging challenges

— Can you get enough information?

— Do you have too much information?

— How do we parse what we have?

— What about sensitive information in the log?

— Boredom!

• Assumption: IDS/IPS already looking for “obvious” anomalies

— …what of other application security requirements?

• Strategically placed audit servers can improve "sloppy" environments

— Financial systems, CCTV cameras, …

— Goal: Build trusted log for problem detection / recovery

— Can be more cost effective to unroll transactions after the fact

— Often only practical way to protect against insider threats

Submersible Recovers Flight Data

Recorder from Alaska 261 (US DOD)

Security Remodeling: 10 Ways to Retrofit Your Transactional System

6Copyright © 2006-2007 Cryptography Research, Inc.

3. Build an Audit Server (2/2)

• Re-evaluate logs with problem recovery in mind

— Take your auditor to lunch!

• Build log aggregation/collection tool

— Select choke point and start with simple logging;

integrate logs from different sources

— Make “one-way” logs by encrypting with public key

(GnuPG)

• Build log parsing & alert tools

— Do not focus on alarms and anomalous behavior detection

— Build easy to modify tools that can unroll critical sequences

• Significant events in a single session, series of DB operations

• Events during a span of time

• Chaining across large periods of time

4. Protect Legacy DB Fields (1/3)

• Existing DB security tools
— SQL firewall / live query linting tools

— Disk volume encryption

• But…
— Narrower access rules hard to configure and

verify outside of some PEN testing scenarios

— DB contents still queryable, on development

machines, etc.

— Hard to modify legacy DB!

BEGIN WORK;

UPDATE floor_inventory

SET quantity = quantity -

3 WHERE sku = ‘1927241';

COMMIT;

• Use encryption on a per-field basis
— Encrypt sensitive fields on entry to legacy DB

— Require decryption key to read data

— Simplifies management

Security Remodeling: 10 Ways to Retrofit Your Transactional System

7Copyright © 2006-2007 Cryptography Research, Inc.

4. Protect Legacy DB Fields (2/3)

Web App.

Server Store
DB

Server

CC Transaction

Server

HSM

Pub. Key

Client

Client

Client

Acquiring

Bank

Server randomly pads CC #,

encrypts with public key. Server

“forgets” all but last 4 digits of CC#.

CC# submitted to

server via SSL

Legacy DB unchanged, CC

field extended to handle

PKCS encrypted card

number.

Internet

Simplified focus: Secure the red box!

• Less concern for backups, server
security, developer machines, network

nodes, inside jobs, etc.

• Max rate of DB compromise limited by
velocity throttling

Encrypted CC# can only be

decrypted at transaction

server. HSM limits max

decrypts / minute.

• Be careful! A similar crypto design…
— DB stores salted SHA-256 hash of CC and final 4 digits

— Edge server hashes incoming CC and inspects against DB entry

• … is susceptible to offline attacks!

— With 12 unknown digits and knowledge of check digit, brute forcing 1011

combinations is 36.5-bits of work

— But CC #’s start with 1-6 digits of more easily guessable BINs

— <30 bits of security!

4. Protect Legacy DB Fields (3/3)

Web App.

Server
Store

DB

Server

Client

Client

Client

Internet

Security Remodeling: 10 Ways to Retrofit Your Transactional System

8Copyright © 2006-2007 Cryptography Research, Inc.

5. Client Side Compartmentalization

http://technet.microsoft.com/en-us/windowsvista/aa906017.aspx

“Windows Vista Bitlocker Architecture”

• Client-side disk encryption
— Protects data at rest

— Can address laptop thefts

— But… PC application must be

trusted!

• Application sandboxing
— Improves resistance against hostile

co-processes

— Software VM’s can be configured

to restrict ports, USB, etc.

— HW virtualization becoming more

available

VMware Browser Appliance

6. Client Environment Checking (1/2)

• Client environment can be a wild place!
— Hostile code, keyloggers, data scrapers,

tunnels, ‘bots, TCP/IP redirectors, …

— What’s in your list of browser root keys?

• Patch management, NAC
— Update client before granting access to

network resources

— Ok for general SW versioning checks

• The next battleground: Mobile platforms
— Example: BBproxy attack with Blackberry

tunnel to Intranet (2006)

— Better configuration management needed

Ghost Keylogger, Sureshot Software

Security Remodeling: 10 Ways to Retrofit Your Transactional System

9Copyright © 2006-2007 Cryptography Research, Inc.

6. Client Environment Checking (2/2)

McGraw & Hoglund

ISBN 978-0-321-46072-1

“Intel Trusted Execution Technology Overview”

2003

Soon: Improved App. Partitions

• Independent partitioned VMs

• API uses root of trust (TPM) to vouch

for integrity of BIOS, OS, apps., …

• Still challenging to get assurance on

complex systems

Downloadable Code

• Anti-virus profile updates

• Windows Update

• World of Warcraft “Warden”

client (2005)

7. End-to-end Security

• Encapsulation of private data before transmittal
— Yahoo! login uses javascript md5 and random

challenge to protect password, prevent replay

— Helpful when client cannot initiate SSL

connection

— Also keeps passwords off edge servers, load

balancing equipment, developer logs, …
Yahoo! login

TCG Software Stack (TSS) Specification

Version 1.10 (2003), p174

• Encapsulation of private data at client
— TPM supports commands to

seal/unseal data

— Improves privacy and integrity of

client-side data

Security Remodeling: 10 Ways to Retrofit Your Transactional System

10Copyright © 2006-2007 Cryptography Research, Inc.

8. Obfuscation (1/2)

Password hashing code at http://login.yahoo.com

function hash(form,login_url) {

...

if (valid_js()) {

var passwd = form.passwd.value;

var hash1 = MD5(form.passwd.value);

var challenge = form[".challenge"].value;

var hash2 = MD5(form.passwd.value) + challenge;

var hash;

if(form.passwd.value){

hash=MD5(hash2);

} else {

hash="";

}

var js = 0;

Sep 2004

Feb 2006
(https://a248.e.akamai.net/sec.yimg.com/lib/bc/bc_1.7.3.js)

function yzq4(r){var w=window;var d=w.yzq1;if(d==null)return;

if(typeof(d)==yzq5){var u="";if(d.s!=null)u+=d.s;

if(d.p!=null)u+=d.p;if(u.length>yzq6){w.yzq1=null;return;}d.s=d.p=nul

l;var z="";var s=0;var o=Math.random();var b;for(b in d){if(d[b]!=

null){if(u.length+z.length+d[b].length<=yzq6)z+=d[b];else

{if(u.length+d[b].length>yzq6){}else {s++;yzq2(u+z+"&Q="+s+"&O="+o);

z=d[b];}}}}if(s)s++;yzq2(u+z+"&Q="+s+"&O="+o);w.yzq1=null;}}function

yzq7(e){yzq4('l');}function yzq8(e){yzq4('u');}function yzq9(yzqa,

yzqb, yzqc){if (yzqc){var o=yzqc.toString();var m=yzqa;var

a=o.match(new RegExp("\\(([^\\)]*)\\)"));a=(a[1].length

>0?a[1]:"e");m=m.replace(new RegExp("\\([^\\)]*\\)","g") ,

"("+a+")");if(o.indexOf(m)<0){var b=o.indexOf("{");if

(b>0)o=o.substring(b,o.length);else return yzqc;o=o.replace(new

RegExp("([^a-zA-Z0-9$_])this([^a-zA-Z0-9$_])","g"),"$1yzq_this$2");

var s=m+";"+"var rv = f("+a+",this);";var n="{"+"var a0 =

'"+a+"';"+"var ofb = '"+escape(o)+"' ;"+"var f = new Function(a0,

'yzq_this', unescape(ofb));"+s+"return rv;"+"}";return new

Function(a, n);}else return yzqc;}return yzqb;}

* not functionally

* identical

8. Obfuscation (2/2)

• General obfuscation goals
— Limit understanding of code

— Obscure data structures

— Obscure instruction flow

• What obfuscation can do
— Provide resiliency against

automated attacks & ‘bots

— But tends to yield “brittle” security

Developer

effort

Attacker

effort

• Apply with caution!
— Can waste enormous amounts of time

— Useless without facility for debugging & code review

— If required, invest in tools for obfuscation and analysis

Go the other way!

Security Remodeling: 10 Ways to Retrofit Your Transactional System

11Copyright © 2006-2007 Cryptography Research, Inc.

9. Select What to do When

• Some things get more difficult with time
— Protocols + key management have

incredible inertia

— If corner case handling is not “clean &

crisp”, upgrades can build on the wrong

path!

— Focus on what’s hard to change later!

• Reactive security elements are often cost
(and risk) effective to defer

— Risk management logic can be

expanded upon

— Make infrastructure investments that

enable reactive security

Explosion, Salvidor Dali

10. Retrofitting May Be the Wrong Idea!

• You may need an “Extreme Makeover”…
— System facing dedicated attackers

— Legacy system a complete mess

— You have the resources to start over

• Don’t waste time with wrong incremental solution
— Start with threat assessment/model

— See how it maps the system you have “CryptoFirewall”

Cryptography Research

• Possible fallback: Independent system for secondary security control
— Security module augments existing infrastructure

— Architecture designed for smooth integration with legacy system

— Goal: >> 2X security, << 2X operational cost

Security Remodeling: 10 Ways to Retrofit Your Transactional System

12Copyright © 2006-2007 Cryptography Research, Inc.

Security Bugs I Have Not Yet Known

Potential Severity

LOW

HIGH

LOW HIGH

O
d
d
s
 o
f
D
e
te
c
ti
o
n

SHA-1

broken?

Functional

bug

DB backup

with live CC#

stolen

CC # field

encrypted

Cookie parsing

spec. vague

Documented

set of illegal cookie

cases

SQL

injection

SQL

firewall

Regression tests

L
o
w

 p
ri
o
ri
ty

S
e
c
u
ri
ty

 c
ri
ti
c
a
l

Security Bugs I Have Not Yet Known

Potential Severity

LOW

HIGH

LOW HIGH

O
d
d
s
 o
f
D
e
te
c
ti
o
n

Compartmentalization,

Contain Impact of Breech

Design Clarity,

Auditing

Implementation Robustness,

Secondary Security Control

Security Remodeling: 10 Ways to Retrofit Your Transactional System

13Copyright © 2006-2007 Cryptography Research, Inc.

Conclusion

• Your system is only as strong as your
weakest link!

• Consider tools for…
— Improving the reviewability of your design

— Containing the impact of a breech

— Reducing your vulnerability cross section

• Your charge: work efficiently!
— Articulate your risks well

— Map your implementation to your risks

This Old House Ventures, Inc.

We’re hiring!

If you are technically strong and want to work on challenging
crypto and security problems, please send a resume!

Contact Information

For more information, or to discuss how Cryptography

Research can help with a security problem:

© 1998-2007 Cryptography Research, Inc. (CRI) Portions may be protected under issued and/or pending US and/or international patents. A separate license from CRI is required for the

CryptoFirewall™, DPA Countermeasures, and Self-Protecting Digital Content™. All trademarks are the property of their respective owners. The information contained in this presentation is provided

for illustrative purposes only, and is provided without any guarantee or warranty whatsoever, and does not necessarily represent official opinions of CRI or its partners.

Benjamin Jun

ben@cryptography.com

415.397.0123

www.cryptography.com

