Why a top 10?

- Commercial security is a young field (<30 yrs)
 - Still developing solid certifications and quality metrics
- Piracy and fraud follow similar, predictable patterns
 - Systems worth attacking attract well equipped attackers
- The absence of security is extremely expensive
 - Poor infrastructure wastes everyone’s resources and ruins the possible
 - Wasteful engineering, mediocre product differentiation, bad security

“It’s Déjà vu all over again” – Yogi Berra
What to look for

• Look for an underlying human “problem”
 – Over-confidence
 – Poor design or operational decision
 – Feature creep towards oblivion

• Did “comps” escape the problem?
 – Systems with similar technology and security requirements
 – Often in industries with different approach to problem-solving

“Why do you look at the speck of sawdust in your brother’s eye and pay no attention to the plank in your own eye?”
 – Matthew 7:3

Who am I? What do I do?

• Cryptography Research
 – Develop & license new security technologies
 – Provide design and evaluation services
 – Major R&D focus on solving real-world security problems

• Industries served:
 – Financial
 – Entertainment / Pay TV
 – Tamper resistance
 – Wireless / Telecommunications
 – Internet

Products incorporating CRI technology secure over $100B annually
Bug #10: DVD CSS

Crypto algorithm failure.

- DVD content protection
 - Content on disk is encrypted

- CSS algorithm
 - Inexperienced designers
 - Not adequately reviewed

- 1999: CSS broken, keys extracted
 - Johansen (& others) release DeCSS
 - Ripping software widely available

Bug #10: DVD CSS

Crypto algorithm failure.

- Crypto failure = no incentive for other attacks
- Knock-off (unlicensed) DVD players
- DMCA legal provisions applied with mixed results

- Bad crypto algorithms are inexcusable
 - DST RFID, CAVE, 3GPP, A5, COMP128, ... lots more!
 - There is a solid body of knowledge on crypto design
 - Seek help if you must employ proprietary designs!
Bug #9: Pachinko Stored Value Fraud

Stored value product cloned to “generate” funds.

- Stored value cards issued for Pachinko parlors
 - Designed to limit tax evasion, money laundering
 - Deployed in conjunction with industry, regulators, and portfolio managers

- Attackers cloned the cards
 - Cards were anonymous, high-value, redeemable for cash
 - Losses > $600M
 - Organized crime difficult to trace, N. Korea involvement believed

The Impact of Fraud on New Methods of Retail Payment, William Roberts, Federal Reserve Bank of Atlanta, 1998;
WSJ May 22, 1996; Image courtesy Andrew, used with permission, http://homepage.mac.com/westernrobot

- Seek to risk manage “unsolvable” problems
 - Expect problems and expect to learn from them!
 - Policies should align interests of responsible parties
 - Good: Credit card merchant agreements
 - Bad: Camcording / movie theater operators

WSJ May 22, 1996
Bug #8:
Y2K

Data structures matter.

• Not a security problem…
 – Critical data fields couldn’t handle rollover
 – Problems at system data junctions
 – Undocumented legacy systems
 – But repair costs staggering!

• Causes
 – “Clever” designers, data inconsistencies, and patchwork infrastructures
 – Limitations in software testability

Data structures matter.

• Check critical data fields for security implications
 – Data can be under-scoped or excessively complex
 – Developers have huge discretion—ask for help!
 – Feature creep is a huge challenge

• Next crisis: Security data structures
 – ID: “Computer Assisted Passenger Screening”, ICAO e-passport, state drivers licenses, government ID (CAC)…
 – IT: Federated identity management, X.509, …
 – Financial: Check 21, …
Bug #7: Napster / P2P

Improved delivery mechanisms simplify content attacks.

- Peer-to-peer filesharing
 - Envisioned by AFS and other filesystems
 - Moore’s law, networking infrastructure
- Napster led the pack
 - Centralized indexing, easy user experience
- “File sharing” becomes synonymous with copyright infringement
 - Majority of Napster content was illegal
 - Music sales fall

```
Year 1980:
1 MP3 for $1000
1 movie for $1M

Year 1998:
25,000 MP3’s for $80
1 movie for $4

Year 2003:
25,000 MP3’s for $80
1 movie for 40¢

Year 2013:
1 movie for 0.4¢
20,000 movies for $80
```

- Aggressive networks emerge
 - “Improved” technology
 - Decentralization, anonymity, deniability, feedback
 - Harder to shut down, harder to trace
- Next stop: movies!
 - MP3 to DVD…10 yrs. of Moore’s law
- Inflection point: high-definition formats
 - HD content offers new opportunities (and risks)

Source: Cryptography Research
Bug #7: Napster / P2P

* Improved delivery mechanisms simplify content attacks.
 * Look to industries that face “unsolvable problems"
 - Last mover wins: Credit card fraud, anti-Spam, anti-virus, ...
 * Format upgrades should enable control of risk
 - Example: Content code directs playback on a player-based VM
 - Detection: Forensic marking capability, playback environment analysis
 - Updates: New discs contain new countermeasures
 * A different mindset...
 - Goal: Extend content release window
 - Forward security: New content resistant to previous attacks

Bug #6: Spam

* Retrofitting security is hard to do!
 * RFC 821: Simple Mail Transfer Protocol (SMTP)
 - Store-and-forward infrastructure
 - Excellent scalability
 * SPAM Problem: Authentication
 - No source validation
 - Humans are terrible authenticators
 * SPAM Problem: Economic disparity
 - Spam costs borne by recipient
 - Similar problem: Telemarketers

Copyright 2005 Cryptography Research, Inc.
Bug #6: Spam

Retrofitting security is hard to do!

- Other auth. problems
 - Cellular AMPS (1983)
 - Phishing

- Anti-SPAM approaches
 - Reactive:
 - Filtering, Blacklist, Legislation
 - Proactive:
 - Micropayment, proof-of-work
 - Infrastructure upgrade: DNS, IPv6

(c) SENATE OF CONGRESS.—It is the sense of Congress that—
(1) Spam has become the method of choice for those who distribute pornography, perpetrate fraudulent schemes, and introduce viruses, worms, and Trojan horses into personal and business computer systems and
(2) the Department of Justice should use all existing law
enforcement tools to investigate and prosecute those who send bulk commercial email to facilitate the commission of Federal

S. 877, CAN-SPAM Act

DomainKey-Signature: a=v=rsa-sha1; q=dns; c=nofws; s=beta;
d=gmail.com; b=jOv9ivlSfxTVjq04gaXJIPSCe0yQehPa6lRBcFDCVOMhipXr5bqCh A1kP4de88AQg+p10i3U8TBjg/MpKqps5lDypaeUCP139MM3XunjrecaS31v3Z1V gqake16CM09a9v29283Mn6v/0jps69jAh8q13M6-q=JibJ2e7V=
Received: by 13.49.2.55 with SMTP id f55mr13687rni;
Thu, 10 Feb 2005 09:59:08 -0800 (PST)
Message-ID: <74ac93f98654300959312a6ab@mail.gmail.com>
Date: Thu, 10 Feb 2005 09:59:07 -0800

DomainKey email header

Bug #6: Spam

Retrofitting security is hard to do!

- SMTP: Too well designed to be replaced?

- Infrastructure retrofits are hard!
 - Jurisdiction issues: Who’s in charge?
 - Wide range of proposed solutions
 - Centralized – Authority, dispute resolution, …
 - Decentralized – Complexity, cheating, …
 - Solutions look to economics
 - Solving the problem of asymmetric costs
 - Incentivize “proper” handling of messages
 - Custom alternate systems

Monty Python’s SPAMalot, Eric Idle, 2004
Bug #5: Mag-stripe Skimming

Security technology outlives usefulness.

- Mag-stripes, CC transaction backbone
 - Defined in ISO 7811/2, 7811/4
 - 1960’s era technology
 - Cardholder data on read-only tracks 1 & 2

- Fraud begets improvements
 - Revocation: Clerk lookup
 - Online transactions, activation
 - CVC, CVC2: Out of band signaling

- But attacks emerge…
 - Card skimming, cloning

Security technology continues to grow

- In person capture, stripe reading, wiretapping, database theft, …

Solutions / Responses

- New infrastructure required
- Cryptographic chipcards, tamper resistance, end-to-end security
- Some proposals silly

Good security architectures have 9 (or more) lives

- Carefully consider incremental improvements
- Replace the security mechanism if it has outlived its lifespan

The Fraudulent Device Inhibitor is placed in front of the entrance to the ATM card reader and is designed specifically to prevent an ATM customer from inserting his or her card into the machine if a trapping device has been added to the card reader.
Bug #4: Pay TV Hacking

Repeatable attacks against tamper resistant devices.

- **Pay TV**
 - Subscription and PPV content

- **A profitable target**
 - “Test cards” sell for high premiums
 - International boundaries generate demand

- **Attackers well equipped**
 - Spend significant NRE
 - Reverse engineering, decap, ...
 - Market subsequent attacks
 - Multiple attack vectors
 - SW bugs, protocol failures, debug ports, glitching, ...

"Fragile secrets – Handle with care!"
Building effective tamper resistance
Friday 11:10am Wireless & Embedded Track

Apply tamper resistance wisely
- Goal: make subsequent attacks expensive
- Manage design complexity
 - Define good security boundaries
- Design a robust TR core
 - Consistent w/ expected attacks
 - Design should be easy-to-evaluate

"Fragile secrets – Handle with care!"
Building effective tamper resistance
Friday 11:10am Wireless & Embedded Track

Copyright 2005 Cryptography Research, Inc.
Bug #3: PC Platform

Embrace principle of least privilege.

“f) Least privilege: Every program and every user of the system should operate using the least set of privileges necessary to complete the job.”

Bug #3: PC Platform

Embrace principle of least privilege.

- **What happened?**
 - OS support minimal
 - Device driver support abominable
 - Application development functionality-minded

- **Lack of compartments begets trouble**
 - Worms / viruses / malware not a surprise...but devastation is!
 - Unintended interactions cause a huge fraction of security problems

- **“Rolling your own” nearly impossible**
 - Shield from hostile code: BIOS, controller chips, INT3s
 - Secure state: Registry tricks, storage volume magic
 - Partitioning: VMware, separate PC + firewall, Citrix

Table 3-16: System Control Operation Format

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operating System</th>
<th>Operating Mode</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND/INH SR</td>
<td>Supervisor SR</td>
<td>Privileged</td>
<td>Satisfaction: 0 = SR</td>
</tr>
<tr>
<td>AND/INH SR</td>
<td>Supervisor SR</td>
<td>Privileged</td>
<td>Satisfaction: 0 = SR</td>
</tr>
<tr>
<td>C/LTU/CTL</td>
<td>Supervisor SR</td>
<td>Privileged</td>
<td>Satisfaction: 0 = SR</td>
</tr>
<tr>
<td>C/LTU/CTL</td>
<td>Supervisor SR</td>
<td>Privileged</td>
<td>Satisfaction: 0 = SR</td>
</tr>
<tr>
<td>C/LTU/CTL</td>
<td>Supervisor SR</td>
<td>Privileged</td>
<td>Satisfaction: 0 = SR</td>
</tr>
</tbody>
</table>

Intel 386: Rings 0-3

- Ring 0: Kernel
- Ring 1: System Services
- Ring 2: Custom Extensions
- Ring 3: Applications

Mototola 68000

- Supervisor mode (SRP bit)
Bug #3:
PC Platform

Embrace principle of least privilege.

- Don’t sidestep security partitioning
 - Lobby for robust sandboxing
 - Use mechanisms that limit unnecessary interactions
 - Resist urge to bypass protections during development

- It will get better for PC’s…
 - New infrastructure: Trusted computing, partitioning, virtualization, …

- It will get worse elsewhere…
 - “Flat” computing + connectivity + multi-application = DANGER
 - Cellphones, PDAs, entertainment systems…

Bug #2:
802.11b WEP

Poor infrastructure causesduplication of security efforts.

- 802.11b WEP: “Wired Equivalent Protocol”
 - Used to encrypt and authenticate packets sent via 802.11b
 - No external review

- WEP protocol horribly broken
 - Integrity check easily bypassed
 - RC4 reseeding on every packet
 - Computationally costly
 - Exposed RC4 weakness
 - Critical pieces missing
 - No key management

ANSI/IEEE Std 802.11 (1999), MAC & PHY Specifications, p63-64
Bug #2: 802.11b WEP

Poor infrastructure causes duplication of security efforts.

• Corporate IT acceptance of 802.11b held back ~18 months
• Beyond wardriving…
 – Real exploits: Unauthorized network access, database thefts
• Forces duplication of security efforts
 – IT administration, VPN, application level security
 – Challenge: embedded devices that lack UI, other resources
 – NRE of ~$100M for CRI clients alone

• Create a lasting legacy!
 – Make it hard for users to make security mistakes
 – Get designs reviewed

Bug #1: To the Unknown Bug

How can we fail less than our fair share of times?
We're hiring!
If you are technically strong and want to work on challenging crypto and security problems, please send a resume!

Contact Information

Benjamin Jun
ben@cryptography.com
415.397.0123
www.cryptography.com