
© 2003 by Cryptography Research, Inc.

EVALUATION OF

VIA C3 NEHEMIAH

RANDOM NUMBER GENERATOR

PREPARED BY

Cryptography Research, Inc.
607 Market St., 5th Floor
San Francisco, CA 94105

(415) 397-0123

Last Revision: February 27, 2003

Information in this white paper is provided without guarantee or warranty of any
kind. This review was performed for VIA Technologies, Inc. but represents the
findings and opinions of Cryptography Research, Inc. and may or may not reflect
opinions of VIA Technologies, Inc. or Centaur Technology. Characteristics of the
C3 Nehemiah may vary with design or implementation changes.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 2 OF 41

Contents

1. Introduction ___ 4

2. Background__ 4

2.1. Applications Requiring Randomness ______________________________________ 4

2.2. Sources of Randomness__ 5

3. Design Overview__ 7

3.1. Entropy Source __ 7

3.2. Digital Hardware and Firmware ___ 10

4. Entropy Analysis __ 11

4.1. Background on Entropy __ 11

4.2. Tools and Approaches__ 12

4.3. Aspects Studied ___ 13

4.4. Results __ 14
4.4.1. Normal Operation __ 14
4.4.2. Startup Behavior ___ 21
4.4.3. Temperature___ 22
4.4.4. Processor Activity __ 23
4.4.5. Modeled Operation ___ 23
4.4.6. Results from Centaur Technologies Testing ____________________________________ 24

4.5. Source Whitening: Extrapolating Test Results _____________________________ 25

4.6. Entropy Conclusions ___ 28

5. Usage Recommendations ______________________________________ 29

5.1. Usage Modes ___ 29

5.2. Feeding an Entropy Pool with the Nehemiah RNG __________________________ 30

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 3 OF 41

5.3. RNG Command overview___ 32
5.3.1. The Configuration MSR ___ 32
5.3.2. The XSTORE Operation ___ 33
5.3.3. Determining RNG Availability __ 34

5.4. Recommended Usage Procedures __ 34
5.4.1. Boot-Time Initialization ___ 34
5.4.2. Application Start Sequence ___ 35
5.4.3. Extracting Random Data ___ 36
5.4.4. Maintaining an Entropy Pool__ 37

5.5. Random Numbers for Non-Secure Applications ____________________________ 38

6. Closing Commentary ___ 39

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 4 OF 41

1. Introduction

Randomness is required for a variety of computational, statistical, and security-related

applications. In particular, random numbers and the processes used to generate them are

a critical component of secure protocols and cryptographic key generation. Security

processes that lack adequate sources of randomness will have poor security.

Cryptography Research has evaluated the C3 Nehemiah random number generator, which

is an on-chip component of the VIA Technologies Nehemiah processor core. When

properly used, the generator was found to be a consistent, high-rate source of entropy

which we believe is suitable for use in cryptographic and high-assurance applications.

This report analyzes the Nehemiah RNG design, provides an entropy analysis of the

source, and provides developer recommendations for proper use of the Nehemiah RNG.

Cryptography Research provided no Nehemiah design assistance to VIA Technologies or

Centaur Technology.

2. Background

2.1. Applications Requiring Randomness

In general, random numbers can be summarized as numbers that are indistinguishable

from outcomes that would arise purely by chance. The quality of a random number

generator is often measured by the degree to which it produces unpredictable and

unbiased output.

Many cryptographic protocols require secret numbers. For example:

• Conventional encryption requires the generation of unguessable keys.

• The computation of a digital signature with the Digital Signature Algorithm

requires, besides the signer's private key, a value customarily called k that must be

secret, and that must not be re-used.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 5 OF 41

• Standards for message encryption using the RSA algorithm generally require the

use of random numbers to form message padding.

• Many challenge-response protocols require the use of a unique number, or nonce.

In practice, a good way to produce a number with a large likelihood of being

unique is to use a sufficiently large random number.

Random numbers are also widely used in numerical simulations, gaming, statistical

analysis, and distributed computations. While a high quality random source is always

best, randomness requirements vary among applications. For example, numerical

simulations often require random numbers that are unbiased, but have fewer

unpredictability requirements. In contract, cryptographic applications often have

extremely strong unpredictability requirements but may be slightly tolerant of biased

information. While this report focuses on the use of the Nehemiah RNG for

cryptographic applications, the results may be applied to other applications.

2.2. Sources of Randomness

Randomness can be found in several places, the more noteworthy of which we will now

discuss.

Quantum Phenomena. Devices have been specifically designed to translate quantum-

mechanical uncertainty into random digits, typically harnessing radioactive decay (the

classic case being Rand Corporation's book, "A Million Random Digits", published in the

1950's).

Thermal Noise. Excluding quantum mechanics, the behavior of physical systems is

deterministic (e.g. given a complete description of a system, one can compute its future

behavior). While this appears to make random number generation impossible, the fact

that matter is composed of particles endowed with disorganized thermal motion makes it

impossible, for practical purposes, to achieve a complete description of a system.

Accordingly, the places where thermal motion affects a circuit's behavior offer sources of

effective randomness.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 6 OF 41

For example, where electrons must surmount a potential barrier to move from one

conductor to another, each electron's thermal motion may help it or hinder it in crossing

the barrier, so that the total charge transferred during some time window varies.

Similarly, thermal movements of silicon atoms in a small region of the crystal lattice

momentarily affect current flow through that region, again affecting the charge

transferred during any given time window.

External Influences. Cosmic rays, temperature fluctuations, supply-voltage variations,

and stray electromagnetic fields may change a circuit's behavior and are generally

considered to be unpredictable enough to be counted as contributing to cryptographically

useful randomness.

Timings of network message arrivals, keystrokes, mouse movements, and disk-operation

completions are also often collected to contribute to random number generators' “entropy

pools1.” While this practice can be effective, the process of data collection is often

cumbersome to implement. Because the possibility exists for sampled events to be

determined or observed by non-random (or hostile) processes, it is difficult to provide a

reasonable estimate as to the amount of entropy contributed by each event. Finally, it is

difficult to collect entropy in systems where no human is present or in systems where the

contents of the entropy pool may be visible to hostile processes.

Chaos. A deterministic system is called chaotic if an infinitesimally small perturbation to

its initial conditions produces a change in its behavior that grows exponentially with time.

While chaos is a concept completely different from randomness, it is important in

random-number generation for the following reason: If an RNG is chaotic, and if there is

some inescapable uncertainty in any contribution to its state (e.g., due to thermal noise),

then simply by waiting for a certain length of time, namely the time required for the

exponential growth of that uncertainty to reach the magnitude of the system's gross state,

we can assume that the state of the system is unknowable. By waiting a sufficient length

of time between samplings, is may be possible to sample high-quality random bits from a

chaotic system that is otherwise deterministic.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 7 OF 41

3. Design Overview
Cryptography Research obtained RNG design information from tests on Nehemiah

processors, as well as documentation, source code, and conversations with engineers at

Centaur Technology. This section contains a high-level overview of the RNG design and

operation.

3.1. Entropy Source

The RNG hardware comprises two parts: a raw-bit generator that serves as an entropy

source and digital post-processing circuitry. The raw-bit generator produces somewhat

random bits which the design assumes will have imperfect statistical properties. The

post-processing circuitry then uses “whitening” and bit discarding to improve the

statistical properties of the imperfect random bits.

Raw bits are generated by using a slow freewheeling oscillator (configured by bias inputs

to 20-68 MHz) to clock the sampling of a fast freewheeling oscillator (configured by bias

inputs to 450-810 MHz). This approach is good if the jitter in the slow oscillator (i.e.,

cycle-by-cycle variations in the oscillator's period) is comparable in magnitude to the

period of the fast oscillator. In the case of this RNG, the jitter of the slow oscillator is

increased by deriving an internal oscillator bias current from two additional fast

oscillators. Thermal noise, manufacturing variations, temperature, software settings, and

local electrical conditions are expected to cause oscillator variations and contribute

entropy to the sampled output. A diagram of the source follows.

1 See RFC 1750 at http://www.ietf.org/rfc/rfc1750.txt

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 8 OF 41

Ring Oscillators A,B,C
450-810 MHz

C

B

A

8_..

8_..

XOR

D

Sampling
Flip Flop

Ring Oscillator D
20-68 MHz

Bias Setting

Bias V
Generator

von Neumann
Corrector

Raw Mode
Select

Shift
Register

Byte to
FIFO

C5XL Entropy Source Design

1 bit
discard

Figure 1: Nehemiah entropy source design

Oscillator operation. As shown above, oscillators A, B, and C are identical free-running

ring oscillators, centered at 450-810 MHz. A single software-controlled bias voltage2 is

used to adjust an internal current supply and effectively change the operating frequency

of the oscillators. This bias voltage is intended to be static and to be set only on system

reset. Oscillators A and B are independently divided by 8, which should generate two

independent oscillatory signals with periods of ~14ns (at the default bias setting). These

independent signals are combined with the XOR operation, and used in conjunction with

the bias voltage to modulate oscillator D. A computer model of the system yielded the

following sample result of the XOR output:

2 Set to one of 8 values (via bits 12:10 of MSR 0x110B).

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 9 OF 41

Figure 2: Output from software-based model of oscillator behavior

Oscillator D is a slower version of the above oscillators, centered at approximately 45

MHz. It serves as the RNG sampling clock and is used to clock a flip-flop that samples

oscillator C. The bias voltage for oscillator D incorporates the same bias voltage as the

above oscillators, but also includes the combined XOR output from oscillators A and B.

Whitener. Pairs of bits in the sampled output are then passed through a von Neumann

whitener, which operates on two new bits at a time (once for every 2 periods of oscillator

D). The von Neumann whitener is designed to reduce bias from the sampled data and

operates in the following fashion:

Input
(bits discarded
after use)

Corrector Output

0 0 No output (no shift register activity)

0 1 Output = 0 (shift "0" into shift register)

1 0 Output = 1 (shift "1" into shift register)

1 1 No output (no shift register activity)

The whitening circuitry supports a "raw bit bypass" mode, in which each bit sampled

from oscillator C is clocked directly into the shift register. This mode provides

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 10 OF 41

convenient access to RNG internals for testing purposes. (Most of the entropy tests

performed by Cryptography Research were performed on the raw source.)

Shift register operation. The shift register shifts in whitened bits as they become

available. After 8 bits of information have entered the shift register, one byte is

transferred to the digital subsystem FIFO and the next incoming bit is discarded.

Power control. Control logic can instruct the entropy source to enter a low-power mode,

where oscillator internal bias currents are removed (effectively removing power from the

oscillators). When exiting low-power mode, the contents of the shift register are

discarded and the next complete byte destined for the shift register is also discarded.

3.2. Digital Hardware and Firmware

The datapath and microcode subsystem are primarily responsible for supplying the

microprocessor with random bytes when they are requested. The digital block shares the

primary microprocessor clock, maintains a 32-byte FIFO queue (comprised of four 8-byte

buffers), controls software reads, and permits adjustment of RNG parameters.

Registers and commands. The RNG is controlled through a 32-bit status/configuration

register (MSR 0x110B), which is accessible only to ring 0 code. RNG data are read via

the XSTORE instruction, a Nehemiah specific x86 command. Based on the 2-bit divisor

setting, 1 to 8 bytes of the FIFO memory are copied to user memory on each successful

XSTORE call. The XSTORE command also copies the contents of the MSR to user

memory.

Queue management. Data is transferred from the entropy source to the FIFO on a byte-

wise basis. Each XSTORE instruction consumes either zero or 8 bytes of FIFO memory.

(Zero bytes are consumed if not enough data is available. Otherwise, 8 are consumed.)

The hardware prevents "stale" data from being re-read, and also marks all FIFO data stale

when any RNG configurations are changed. The entropy source oscillators are powered

down when the FIFO is full (see power control section below).

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 11 OF 41

Power control. The digital subsystem powers off the entropy source when the RNG is

not enabled, or when the FIFO is full.

Selectable filter: XSTORE divisor. The XSTORE command consumes 8 bytes of FIFO

memory unless fewer than 8 FIFO bytes are available, in which case no bytes are

returned. The XSTORE command takes a 2-bit divisor parameter, which is used to

discard (2divisor – 1) bits for each bit returned to user memory. For example, a divisor of 0

will result in 8 bytes of output data, while a divisor of 3 will result in 1 byte of XSTORE

output.

Selectable filter: String filter3. When activated, the string filter discards new bytes from

the entropy source if the new byte would otherwise cause bytes entering the FIFO to

exceed a maximal number of consecutive “1” or “0” bits (where the limit is a 6-bit

configurable parameter). The filter also has an “alarm” bit that is set if any bytes have

been discarded.

4. Entropy Analysis

4.1. Background on Entropy

Entropy is used by cryptographers as a measure of unguessability or incalculability. If a

secret value (such as a key) is chosen by a process that gives n bits of entropy, then the

average number of tries required to guess that value by exhaustive search is 2n-1. Entropy

is conveniently additive: the entropy of the combination of two independently chosen

values is the sum of their individual entropies. Because of this additivity, it makes sense

to speak of the entropy per bit of a bit source and to compute the number of bits that must

be combined to make a secret key of a given strength.

When a bit generator produces serially correlated bits, successive bits are not

independent, and their entropies cannot be meaningfully added. However, the useful

3 Use of this feature is not recommended except for testing purposes.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 12 OF 41

notion of per-bit entropy can be restored by calculating the entropy of the distribution of

strings of n successive bits (for some n large enough to encompass the effects of the serial

correlation) and dividing by n. This per-bit estimate may understate the entropy of

individual bits or of short strings of bits, but this conservative estimate is appropriate in

security applications.

In an analysis of this kind, one generally doesn't arrive at a specific figure for the per-bit

entropy of a bit source. Instead, one establishes an upper bound on the entropy, typically

by identifying unequal distributions or patterns in sequences of output bits; and

sometimes one derives a lower bound on the entropy, perhaps from theoretical arguments

or perhaps by reasoning from analog measurements on the system. Just as no statistical

test can prove the randomness of a bit source, no statistical test on output bits can

establish a lower bound on entropy.

The upper bound on the entropy estimate allows us to warn convincingly against

procedures that are demonstrably inadequate. For example, if a hypothetical bit generator

has been shown to provide only 1/2 bit of entropy per output bit, it is easy to dissuade an

application programmer from constructing an 80-bit secret key by simply reading 80 bits

from that bit generator. At the other extreme, a lower bound is the only firm assurance for

the most cautious user, who will typically divide his entropy requirements by the lower

bound to determine the number of RNG bits that he should hash together to make a key.

Establishing any sort of lower bound is difficult, and it is not unusual for the upper and

lower bounds to differ by orders of magnitude.

4.2. Tools and Approaches

In the studies described here, the RNG was run in its most vulnerable mode: the von

Neumann whitener was turned off, and every bit clocked into the shift register was read

and examined. As expected, the output in this mode is unsuitable for numerical

applications; the bits produced are statistically imbalanced and fail all sensitive statistical

tests. However, this mode makes it is easier for to find any nonrandom behavior that

might cause problems and would be more difficult to detect when operating in other

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 13 OF 41

modes . (In particular, the prudent user will run the RNG with the von Neumann whitener

turned on, and may set the EDX divider to use a subset of the output bits, both of which

are designed to improve the quality of the random bits produced by discarding bits that

are more likely to be correlated.)

To find an upper bound on per-bit entropy, we have used two general approaches:

• Computing entropies of distributions. Given a large sample of RNG output, we

tally the number of occurrences of all n-bit patterns, for n up to 24. We then

compute the entropy of this distribution and divide by the number of bits.

• Measuring the "predictability" of bits. Given a large sample of RNG output, we

build a predictor that attempts to predict the value of any bit from the values of

bits immediately around it in the sequence. If the success rate of the predictor is p,

the entropy of the bit being predicted is taken as () () ()pppp −−−− 1log1log 22 .

4.3. Aspects Studied

Several different aspects of RNG operation were studied:

• Normal operation. Tests were performed to determine if non-random behavior

was detectable in the raw output. Output sufficiently biased to introduce

weaknesses in security applications will normally make an RNG fail standard

statistical tests.

• Bias variation. The 3-bit bias setting4 affects the periods of all four source

oscillators. Variations in the bias setting may affect the RNG output.

• Chip variation. Differences in manufacturing lot or wafer position may affect the

RNG source operation. The authors received four Nehemiah chips of varying

speed grades and performed testing on all four chips.

4 Note: the bias setting can be treated as a 2’s complement number, where bias=0 is the center and bias=3 /
bias=4 represent bias extremes.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 14 OF 41

• Startup behavior. Because the oscillators are stopped when the accumulation

buffers are full, XSTORE operations are likely to include data from freshly

started oscillators. It seems reasonable to suspect that oscillator startup is to some

extent reproducible, so initial RNG bytes may tend to be the similar across

XSTORE calls returning startup data.

• Die temperature. The temperature of the processor die could affect the operation

of the RNG oscillators in ways that reduce the quality of RNG output.

• Local correlation. In multi-application environments, a potentially hostile process

could access the RNG immediately before or after a secure process executes the

XSTORE operation. Therefore, any bit correlations across consecutive XSTORE

operations may detract from the quality of RNG output.

• Varying processor activity. Varying levels of CPU activity may affect the

properties of the RNG output.

4.4. Results

4.4.1. Normal Operation

To study RNG behavior under normal (continuous) operation, samples of slightly more

than 5 gigabytes of raw output were taken from several different processor chips at all 8

possible bias settings. These samples were analyzed for the apparent entropy of the

distribution of 16-bit values, the bias of single-bit frequencies, and the predictability of

individual bits within 16-bit fields. The results for one of the processor chips are

presented in the following figures.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 15 OF 41

Figure 3: Entropy during continuous RNG operation (raw output)

Figure 4: Predictability during continuous RNG operation (raw output)

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 16 OF 41

A worst-case predictability of 72% implies an entropy of only 0.855 bit, notably smaller

than the 0.95-bit-per-bit entropy of the overall distribution. This difference is expected,

since the displayed predictability value is the highest of the 16 bit positions, while the

overall entropy figure reflects also the 15 other, apparently less predictable, bit positions.

In addition, the predictability measure also assumes knowledge of all other bits.5 Thus, a

large difference between the entropy of the distribution and the entropy inferred from the

highest predictability indicates differences in bit-to-bit predictability.

We say that other bits are apparently less predictable, because the RNG generates bits for

all positions in the same way, so we do not expect that some bit positions within our

arbitrary 16-bit framework could be intrinsically more predictable than others. The

appearance of a difference stems from the fact that we are predicting the value in one bit

position based on the values in the other 15 positions, and the predictive value of those

other 15 positions presumably varies depending on their dispositions relative to the bit

being predicted. In practice, the most predictable positions tend to be near the center of

the 16-bit window. It is important to note that other bit positions would probably be just

as predictable, if we kept a larger context of adjacent bits on which to base our

predictions. It is also noteworthy that the RNG discards a bit between bytes. As a result,

bits adjacent to the byte boundary are less predictable because only one neighboring bit is

known. To be conservative, one should assume that the worst predictability score applies

to all bit positions.

The following lessons were drawn from the test results:

• The entropies of the distributions are consistent with a raw source of generally

good quality. These tests yield candidate upper and lower entropy bounds of 0.85

to 0.99 bits per bit of raw output, respectively.

5 A simple example is the case where a two-bit value is evenly distributed between the two outcomes {0,0}
and {1,1}. The distribution’s entropy is 1 bit (0.5 bit per output bit), but the predictability of each bit
would be 1, implying an entropy of zero. Since one cannot be certain that adversaries will not have access
to prior or subsequent output bits, the entropy implied by the predictability is a more conservative measure
of the entropy of the output

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 17 OF 41

• There is a fairly consistent tendency for bits to be predictable at about the 70%

level. While some bias settings (in particular, bias = 2) appear to yield higher

levels of unpredictability, the relatively small sample size does not allow

conclusive evidence of a trend. Accordingly, the conservative interpretation is that

raw, continuous bits from the RNG can be predicted at a 70% predictability rate,

yielding approximately 0.88 bits of entropy per bit of raw output.

• The single-bit distribution tends to be a few percentage points off the desired 50-

50 (not shown). This discrepancy is trivial compared with the predictability, and

is substantially reduced (but not completely eliminated by) the whitener.

The predictability figures indicate that the RNG favors certain patterns of behavior. Some

questions about these patterns come to mind.

• Do these patterns persist over time?

• Do the same patterns apply at different bias settings?

• Do different chips have the same patterns?

To study the patterns' persistence over time, four separate samples of 5.24 gigabytes each

were taken. The samples were named 1a, 1b, 1c, and 1d. Patterns found in samples 1b,

1c, and 1d were used to attempt to predict bits in sample 1a. This process was repeated at

each of the 8 bias settings. The results appear in the following figure.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 18 OF 41

Figure 5: Predictability across runs (raw output)

Observations:

• Patterns from runs 1b and 1c are relatively effective at predicting the bits in run

1a, while run 1d is conspicuously less good. Since runs 1a and 1d were spaced

further apart, likely patterns may be dependent on local environmental conditions.

• The bias setting of 2 is again seen to be less predictable than other bias settings,

which would indicate that bias=2 may yield higher quality output.

To study the persistence of patterns from one bias setting to another, we used the 8 "1a"

samples from the preceding study, and measured how well the tables built at one bias

setting predicted bits at another bias setting. The results appear in the following table.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 19 OF 41

Figure 6: Predictability across bias settings (raw output)

Observations:

• Changes in bias yield gradual changes in RNG output patterns. For example,

results from bias 5 are most effective at predicting the results from bias 5, are

somewhat less effective at predicting results from biases 4 and 6, and are

progressively less effective at predicting other bias settings.6

• Biases 1 and 3 are relatively individualistic, while bias 2 is, again, especially

unpredictable. This suggests that bias 2 may provide a “local maximum” for

pattern unpredictability.

To study the commonality of patterns between chips, we compared, at each bias setting,

5.24-gigabyte samples taken from chips arbitrarily named 1, 3, and 4. (For chips 1 and 3

we had multiple data sets, of which we used the first, 1a and 3a.) The results appear in the

following figure.

6 Note: the bias setting can be treated as a 2’s complement number, where bias=0 is the center and bias=3 /
bias=4 represent bias extremes.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 20 OF 41

Figure 7: Predictability across chips (raw output)

Observations:

• With one exception, one chip's patterns are not particularly useful for predicting

another chip's bits. (A 50% chance of predicting a bit correctly means that the bit

is effectively random.)

• At bias=1, chips 1 and 4 appear to bear a strong resemblance to each other.

• Bias = 2 appears to be notably less predictable in all three chips. At this bias, the

self-predicting success rate is below 61% for all three chips.

We can conclude that continuous usage of the RNG yields mildly predictable RNG

behavior, yielding a “worst case” entropy of about 0.85 bits per raw output bit under

predictability analysis. While predictability patterns were found to vary with oscillator

bias settings, no bias settings were particularly poor (although the bias=2 setting appears

to yield somewhat higher entropy). In addition, the results also suggest that RNG

behavior may be affected by chip-specific differences, such as manufacturing or die

temperature, although a larger sample size is required to assert this claim.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 21 OF 41

4.4.2. Startup Behavior

A program was written that reads 8 bytes from the RNG, then pauses long enough to

ensure that the accumulation buffers become full and the oscillators are therefore stopped

before reading the next 8 bytes, repeating 12.5 million times. Counters tally the number

of occurrences of every possible 16-bit value in each of the seven pairs of adjacent bytes,

a total of 7 * 65,536 counters. For each of the seven byte pairs, the table of 65,536 tallies

was processed to compute the classical Shannon entropy of the distribution. Also for each

set of tallies, the best single-bit predictor was found and its success rate computed. For

example, it might be found that the bit in the 0x0020 position can be correctly predicted

with 68% success based on the remaining 15 bits.7

The results are presented in the following Figure. As described previously, the

distribution entropy is significantly higher than entropy implied by the predictability the

target bits.

Figure 8: Entropy and predictability at startup (raw output)

7 This measure overstates the actual predictability, since the predictor was used on the same data that was
applied to train it. Fair tests, applying the predictor to an independent set of tallies, were occasionally done
to assess the magnitude of the overstatement.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 22 OF 41

These results contradict the hypothesis that the oscillators might come up in some

repeatable relationship, and support information received from Centaur on the relatively

fast startup-timings for the RNG oscillators. In particular, the computed entropies (by

distribution and by predictability measurement) are higher for earlier startup bytes.

Therefore, applications reading RNG data generated at oscillator startup do not seem to

be adversely affected.

4.4.3. Temperature

By regulating power to the processor cooling fan, the surface temperature of the chip was

held within 3 degrees Celsius while consecutive samples of 512MB were read from the

RNG. Occurrences of all pairs of consecutive bytes were tallied, resulting in 524,287,999

tallies in 65,536 bins. From these tallies, the following entropy and predictability figures

were computed.

Figure 9: Temperature effects (raw output)

A very mild deterioration of the statistics is observed as the temperature rises.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 23 OF 41

4.4.4. Processor Activity

Three runs with consecutive samples of 512MB were made under different processor

loading conditions. The results are presented in the following table.

CPU Load single-bit bias per-bit entropy predictability
none 50.99 0.955 71.0

low-priority
competing process 50.99 0.952 71.8

high-priority
competing process 51.00 0.952 71.79

In general, competing processes are expected to increase the number of shutdown/startup

cycles of the RNG oscillators, as process timeslicing increases the delays between

subsequent XSTORE operations. We conclude that competition for the processor does

not significantly affect the quality of the RNG output.

4.4.5. Modeled Operation

A program was written to simulate the simplest complete model of this RNG. This

model system is deterministic and is characterized by the periods of the three fast

oscillators, the two periods of the slow oscillator, and the four oscillators' phases.

Changes to the slow oscillator's period were considered to happen instantaneously, and

were made in such a way as to preserve the phase angle of the oscillator at the instant of

change. An example of the modeled output of the XOR is shown in Section 3.1.

The simulator was used to study the effects of RNG parameters on the RNG output and to

analyze the characteristics of deterministic models of the system. The simulator

generates output with spectral content that differs substantially from the RNG output and

from the output of a cryptographic PRNG.8 However, the simulator output passes the

FIPS-140 test suite fairly consistently (14 failures out of 320 tests). With whitening

enabled and EDX=2, the simulator output passed all tests in the FIPS-140 suite.

8 Spectral content was measured with FFT and autocorrelation tests.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 24 OF 41

Tests with the simulator provide a cautionary note: as with most oscillator-based RNG

designs, there is no obvious test that can prove that the output is truly random instead of

the result of a complex and unknown deterministic process. Although our simulator

analysis and statistical tests are suggestive of high quality, RNG users for security

applications should always make the most conservative choices possible and, if practical,

incorporate entropy from all available sources.

4.4.6. Results from Centaur Technologies Testing

Cryptography Research was provided with an assortment of statistical tests that were run

on the output of various chips running in various modes on various processors. About 14

different chips were tested. About half the tests (179,514) were run with undersampled

output (EDX = 3) and the von Neumann whitener on. The remaining tests (134,301) were

run at the full sampling rate (EDX = 0), the von Neumann whitener off, and SHA mixing

of the output bits.

These tests measure the suitability of the RNG for numerical applications. They are not

particularly relevant to security applications, since insecure pseudorandom bit generators

have been known to pass these statistical tests.

The tests run with SHA mixing all produced excellent statistics. This is unsurprising,

since good SHA mixing produces excellent statistics for all known input streams.

Tests run without SHA mixing tended to fail the demanding statistical tests that were

applied. This does not prove that the random bits are particularly poor, since tests

encompassing so much data will detect very small flaws in an RNG; but it does indicate

that applications requiring high quality randomness should not use this RNG without

mixing.

It is possible that by experimenting with the bias settings, a setting may be located that

produces random bits with better statistics. However, every chip might not have such an

optimal bias setting, and chip performance may drift with time and/or temperature. To

minimize the likelihood of a problem, users of this RNG (as well as virtually any other

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 25 OF 41

hardware-based entropy source) who require high quality randomness should use

appropriate mixing functions.

4.5. Source Whitening: Extrapolating Test Results

The above RNG tests were performed with the von Neumann whitener deactivated. The

usefulness of von Neumann whitening depends on the characteristics of the input

bitstream and the intended use of the output bits. Specifically,

• von Neumann whitening works well on bits from memory-less generators.

• It works less well on bit streams with serial correlations.

• Its bit-balancing effect is important for numerical work.

• Under normal circumstances, it will improve the entropy of the output, although

in some unusual (largely theoretical) situations it can reduce entropy.

• Its bit-balancing effect is often less important for cryptographic applications

where post-processing is used to produce high-entropy output from lower-entropy

sources.

To illustrate these points, consider the following simple examples.

Biased, independent bits. The whitener is ideally suited for input bits that are

independent but biased. If each bit is 1 with probability p, then the entropy per input bit is

() () ()pppp −−−− 1log1log 22 , and the average number of output bits produced per input

bit is ()pp −1 . These two functions agree nicely, as shown in the following figure.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 26 OF 41

Figure 10: von Neumann correction of biased, independent bits

The rate at which output bits are produced never exceeds the rate at which input bits can

be imagined as "bringing entropy" in, so it seems reasonable (and is in fact true) that each

output bit holds a bit of entropy. In other words, each output bit from a von Neumann

corrector brings one bit of entropy if the raw bits are independent but biased with any

probability p between 0 and 1.

Serial correlation. Consider a bit generator where the probability that any two

consecutive bits differ is p. If 2
1=p , this is a perfect random bit generator. If p is small,

it will produce long runs of identical values, and the whitener will seldom output a bit. If

p is large (i.e., near 1), it will produce long patterns of alternating 0's and 1's, and the

whitener will almost always output a bit. The corresponding plot for this generator

follows. Toward the right-hand side of the chart, the rate at which bits are output exceeds

the rate at which entropy enters the system; and indeed, the entropy per output bit falls

sharply. In this region, a strong serial correlation remains among the output bits..

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 27 OF 41

Figure 11: von Neumann correction of serially correlated bits

While the whitener is less effective at handling serially correlated bit data, these diagrams

suggest that the whitener will at least improve the per-bit entropy of whitened bits in this

case.

A series of whitened 512MB samples were taken from a single processor. As expected,

the results had bit biases that were substantially smaller (within 0.015% of an expected

50-50 distribution), but still detectably imbalanced.9 The worst-case bit predictability

(calculated by predicting an output bit with knowledge of the 15 neighboring bits) was

reduced to 55.1%, yielding entropy measurements of 0.99 bits of entropy per bit. The

serial correlations of the output bits also diminish more quickly, as illustrated in the

following two diagrams.10

9 For this sample size, one standard deviation is 0.00156%, so the whitened distribution can still be
considered statistically imbalanced.
10 Serial correlation is viewed by plotting the percentage of 1's as a function of position after a 1 in the
high-order bit position of a byte. (Ordinarily, positions after all 1 bits would be computed, but this
weighing is used to avoid corruption by the missing bit after every byte.)

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 28 OF 41

Figure 12: Serial correlations diminish more quickly when whitener is enabled

It is important to note that van Neumann correction can, at least in theory, reduce the

entropy from a source. For example, a source whose output alternates between “0” bits

and random bits contains 1 bit of entropy for each two output bits. Applying the whitener

to this source would provide an output sequence of all zeroes (i.e., containing no

entropy). Our tests did not reveal any patterns like this or any other output characteristics

that would cause the whitening step to reduce the output entropy.

4.6. Entropy Conclusions

In a limited set of tests, the raw RNG source was found to have measured entropies

between 0.78 bits per output bit and 0.99 bits per output bit. Changes in bias,

temperature, stop/start behavior, and processor were not found to significantly reduce the

RNG output quality. Use of the von Neumann corrector is expected to improve the

quality of the output and was observed to do so rather substantially.

Overall, we believe that the Nehemiah RNG provides a high-quality and consistent

source of entropy. In normal operation (whitener enabled, EDX divisor set to zero), users

should typically obtain over 0.99 bits of entropy per output bit. In applications where the

quality of the randomness is critical, developers should make more conservative

assumptions about the randomness of the output. Our most conservative interpretation of

our results suggests that sensitive applications should be able to assume that the

Nehemiah RNG, after whitening and with EDX divisor set to 0, provides at least 0.75 bits

of entropy per output bit. (In practice, we recommend that developers make even more

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 29 OF 41

conservative assumptions, since the high data rates offered by the Nehemiah RNG allow

the collection of extra output without any significant performance penalty.)

5. Usage Recommendations

5.1. Usage Modes
This section describes recommended procedures for the use and initialization of the

Nehemiah RNG. It is addressed to three primary audiences:

• Developers of OS-level resources. The Nehemiah RNG serves as a fast, high-quality

entropy source for existing randomness resources (the /dev/random and /dev/urandom

UNIX resources are perhaps the most well known). Because these resources can be

used by a variety of applications, developers of OS-level randomness resources must

incorporate the RNG in a manner that produces cryptographically strong random

numbers, makes appropriate entropy estimates, operates efficiently, and resists attacks

where “hostile” and “trusted” code may share the same resource.

• Developers of high-security applications. Some high-security applications (such as

key generation and challenge-response protocols) require that individual applications

be provided with a cryptographically strong source of randomness. Developers of

these applications may want to increase assurance by obtaining random data directly

from the Nehemiah RNG as (or in addition to) their primary randomness source.

• Developers of non-secure applications with lower entropy requirements. Some

applications (such as those that currently use the C “rand()” function) typically

have less stringent entropy, security, and statistical requirements.

Our usage recommendations are primarily designed for applications where an extremely

high quality source of randomness is required. Developers of non-secure applications

that do not require such high quality randomness (the third category) can always elect to

use these numerically-conservative methods for random number generation. Alternately,

developers can use OS-level randomness resources that incorporate output from the

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 30 OF 41

Nehemiah RNG. Section 5.5 of this document provides guidelines for developers of non-

secure applications who prefer to extract data directly from the Nehemiah RNG.

5.2. Feeding an Entropy Pool with the Nehemiah RNG

As with any hardware entropy source, it is recommended that the Nehemiah RNG be

used as a source of seed data for a cryptographically strong PRNG or hash function. If

implemented correctly, cryptographic functions can produce high-quality random data

(ideally with one bit of entropy per output bit) from a larger quantity of source data with

less than one bit of entropy per bit.

In such a design, output from XSTORE calls is incorporated into a buffer by a process

referred to as seeding an entropy pool. The entropy pool may be occasionally

compressed or “stirred” with a mixing function, which combines entropy across RNG

data. Finally, application requests for random numbers are served by an output function,

which transforms data in the entropy pool to generate outputs that can be used as random

numbers by the application.

1. SEEDING

2. MIXING

3. OUTPUT
Source

FIFO
and Filters Entropy Pool Output

Function

Mixing
Function

XSTORE

C5XL RNG

Application
Request

Random
Bytes

Providing PRNG Seed Data

Figure 13: Seeding a PRNG with the Nehemiah RNG

Because the mixing and output functions are a series of deterministic operations, this

construction is referred to as a Pseudo Random Number Generator (PRNG) if the design

allows the number of output bits to exceed the entropy of the seed data. Cryptographic

functions can also be employed as part of a true RNG to compress larger amounts of

partially-random seed data to produce higher-quality output. A well-designed PRNG

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 31 OF 41

serves as an entropy buffer in which the various rates of seeding and output, as well as

the quality of the seed material, determine the quality of the output. Cryptographically-

based PRNG designs often use hash functions (such as SHA-1) or modular arithmetic,

which have desirable properties for mixing and output functions. A complete discussion

on PRNGs is outside the scope of this document.11 The use of cryptographic processing

offers the following advantages:

• Improved per-bit entropy. The per-bit entropy of the Nehemiah output can be

improved by integrating RNG output into a seed pool at a rate greater than the

rate at which entropy is extracted from the seed pool.

• The entropy pool has inertia. The state within the seed pool of a PRNG enables

bursty applications (such as SSL key generation) to consume random data at a

rate that temporarily exceeds the bitrate of the source.

• Protection against some failure modes. It is difficult to certify that an RNG will

never experience “hiccups” or local conditions that may result in comparatively

low entropy output. A properly-seeded PRNG can “ride out” catastrophic source

RNG failures while maintaining levels of unpredictability that are suitable for

many applications.

• An additional margin of safety. A properly-constructed mixing function will

combine entropy that has been collected over time with “fresh” entropy from the

source. This will result in output entropy that should be better (or at least no

worse) than using the source directly.

PRNGs with better sources of seed data can provide higher-assurance output. In the

UNIX /dev/random resource, event and timing data from low-rate events (such as mouse

movement or process timings) is commonly used for seeding when no hardware source is

available. Because estimating the entropy provided by such events is difficult and

because they occur relatively infrequently, the amount and quality of the seed data

available to /dev/random is limited. The Nehemiah RNG provides a consistently high

11 More information on PRNGs can be found in Yarrow-160: Notes on the Design and Analysis of the

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 32 OF 41

level of entropy at substantially higher rates. Using the Nehemiah RNG as a source of

PRNG seed data should improve the assurance of applications that require randomness.

5.3. RNG Command overview

This section introduces specific Nehemiah RNG commands. Considerably more detailed

information is available in Sections 3 and 4 of the VIA C5XL Processor Random Number

Generator Application Note.

5.3.1. The Configuration MSR

The RNG is controlled through a 32-bit status/configuration MSR (0x110B). While the

MSR itself is only accessible to ring 0 code, most MSR contents are copied to EAX on

every completed XSTORE operation, and some MSR bits can be probed by examining

the Centaur Extended CPUID Feature Flags. It is therefore possible for user applications

to view (but not change) the status of the MSR.

Cryptography Research recommends setting the MSR to 0x00000020 (RNG enable, all

other settings 0) as part of the operating system boot process. Multi-application systems

should avoid making any further modifications to this register. The MSR register settings

are shown below:

MSR 0x110B

31:22 21:16 15 14 13 12:10 9:8 7 6 5 4:0
Reserved String

Filter
Count

String
Filter
Failed

String
Filter

Enable

Raw bits
enable

DC bias Reserved Reserved RNG
enable

Reserved Current
Byte
Cout

 Read/
Write

Read/
Write

Read/
Write

Read/
Write

Read/
Write

 Read/
Write

 Read
only

Source: Centaur Technology

Disable string filter (clear MSR bits 21:13). Because this feature can introduce significant biases in the

output, it should only be used for testing purposes and should be disabled during normal operation. (While

the alarm bit feature, described in Section 3.2, could be used in some applications to detect a catastrophic

RNG failure, it is difficult to properly handle such alarm conditions in multi-application environments. As

a result, applications should implement any required quality monitoring in software.)

Yarrow Cryptographic Pseudorandom Number Generator, by J. Kelsey, B. Schneier, and N. Feguson.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 33 OF 41

Activate von Neumann corrector (clear MSR bit 13). As discussed in Section 3.1, the corrector discards

bits to restore a uniform per-bit frequency. The corrector also increases the temporal separation between

consecutive bits, which should improve the per-bit entropy.

Use default bias setting (clear MSR bits 12:10). The oscillation frequency of each RNG oscillator is

regulated by the 3-bit bias voltage setting. While the choice of bias setting is somewhat arbitrary, the

default setting should be used for cross-application consistency.12 Secure applications should also check

that the bias setting does not change from the default.

Reserved bits. Centaur reports that the reserved bits are currently ignored. Applications should never set

any reserved bits.

5.3.2. The XSTORE Operation

The XSTORE operation is an extended x86 instruction that can be run from any

application. A complete set of documentation for the XSTORE command can be found

in the VIA C5XL Processor Random Number Generator Application Note. The following

recommendations apply to the use of the XSTORE command in security applications:

• Prior to calling XSTORE, verify that the RNG is enabled. Using XSTORE

without a present and enabled RNG will result in an exception or otherwise

unpredictable behavior.

• Specify the correct divisor. On each XSTORE call, the 2 lowest bits of EDX

specify the divisor, or the rate at which random data is to be returned.

Applications that fail to specify the divisor correctly may receive fewer random

bytes then expected.

• Returned data. XSTORE may return (or overwrite) up to 8 bytes. At least 8

bytes of output memory must be allocated to avoid buffer overruns. At EDX=0,

the RNG returns bytes in the following order: older bytes are stored in lower byte

addresses; within each byte, the most significant bit is the oldest.13

12 While somewhat better statistics have been measured at a bias setting of 2, the bias setting must be
shared by all applications running on the system. Future versions of the Nehemiah and successor parts may
also have slightly different “optimal” settings. As a result, it is advisable to use the declared default value
of 0 (as written in the VIA C5XL Processor Random Number Generator Application Note).
13 Note: the relative byte and bit ordering may change when the EDX divider is nonzero.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 34 OF 41

• Inspect RNG configuration on each call. Before interpreting data returned by the

XSTORE call, the application should inspect the MSR configuration (as copied to

EAX) to ensure that the RNG configuration is correct and unchanged. Because

the MSR configuration should be checked on each XSTORE call, the REP prefix

should not be used.

5.3.3. Determining RNG Availability

Before using or initializing the RNG, developers should ensure that a VIA Nehemiah

processor containing the RNG feature is present. User-level applications should ensure

that the RNG is enabled and that SSE instructions are enabled before performing

XSTORE operations. Section 3.2 of the VIA C5XL Random Number Generator

Application Note defines procedures for:

• Determining if a VIA Nehemiah processor is present

• Determining if the RNG feature is present (Centaur Extended CPUID Flag

EDX[2])

• Determining if the RNG is activated (Centaur Extended CPUID Flag EDX[3])

• Determining if SSE instructions are enabled

5.4. Recommended Usage Procedures

5.4.1. Boot-Time Initialization

At system boot, OS code (ring 0) should initialize the RNG in the following sequence:

(1) The code should verify that that the processor contains a Nehemiah core with a

RNG that may be enabled. This is done by examining the Centaur Extended

CPUID Flags. (Consult Section 3.2.2 of the VIA C5XL Random Number

Generator Application Note.)

(2) SSE instructions should be enabled, if necessary. (The RNG feature requires that

SSE instructions be enabled. For details, consult Section 3.2.1 of the VIA C5XL

Random Number Generator Application Note.)

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 35 OF 41

(3) Ring 0 code should write the value 0x00000020 to MSR 0x110B. This will

enable the RNG, turn on the von Neumann corrector, set the offset bias to zero,

and turn off string filtering (see Section 5.3.1 for more information about MSR

settings).

(4) Finally, the initialization code should also perform a simple RNG usage test (see

“Application Start Sequence" below).

5.4.2. Application Start Sequence

At application start, the RNG should be verified in the following sequence. An error or

unexpected result in any step should result in a user-visible error message and should

prevent the RNG from being used within the application.

(1) The code should verify that that the processor contains a Nehemiah core with an

enabled RNG. This is done by examining the Centaur Extended CPUID Flags,

particularly EDX[2] and EDX[3]. (Consult Section 3.2.2 of the VIA C5XL

Random Number Generator Application Note.)

(2) The RNG feature requires that SSE instructions be enabled. (Consult Section

3.2.1 of the VIA C5XL Random Number Generator Application Note.)

(3) The application should perform at least one XSTORE operation. This should be

done as listed in “Extracting Random Data” below. This section discusses how

the MSR contents should be validated before RNG use is permitted.

(4) The application may optionally perform tests of the entropy source. At a

minimum, applications should read 16 bytes (using “Extracting Random Data”

below) and ensure that the bytes are not all “0xFF” and not all “0x00”. (The

probability of a correctly-operating RNG failing this test is 2-127, or one in 170

trillion trillion trillion.)

(5) If the application requires the initial seeding of an entropy pool, “Extracting

Random Data” (below) should be repeatedly run until a suitable level of starting

entropy is achieved.

(6) If any errors occurred in performing these steps, the Nehemiah RNG should not

be used and, if possible, an error message should be presented to the user.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 36 OF 41

5.4.3. Extracting Random Data
The following sequence should be run whenever random data is required:

(1) Prepare for XSTORE call. ES:EDI should point to a low-end address of a buffer

of at least 8 bytes.14 EDX should be cleared (EDX=0) to specify reading all 8

bytes from the queue.

(2) Execute XSTORE. The XSTORE instruction (opcode 0x0F 0xA7 0xC0) will

return either 0 or 8 bytes of data in ES:EDI. It will also return the state of the

MSR register in EAX. Note that an Invalid Instruction exception will occur if

XSTORE is executed when the RNG is not enabled.

(3) The contents of the MSR (which is placed into bits 31:5 of register EAX) should

be inspected to verify that:

a. RNG is activated (bit 6 is set).

b. von Neumann corrector is turned on (bit 13 is cleared).

c. String filter is deactivated (bit 14 is cleared).

d. Bias voltage is left at the default setting (bits 12:10 are cleared).

If any of these criteria are not met, the RNG should not be used and, if possible,

an error message should be presented to the user. The MSR should be inspected

on each XSTORE call, as it is possible that another application may have changed

the MSR settings. For the same reason, XSTORE should generally not be

executed with the REP prefix, as MSR changes during a context switch may not

be noted.

(4) If bits 4:0 of register EAX=0 (no bytes read), return to step 2 unless the request

has timed out. If bits 4:0 of register EAX=8, then proceed. If EAX is a value

other than 0 or 8, an error message should be presented to the user and the RNG

should no longer be used by the application.

At the successful completion of this process, the 8 bytes of RNG output (stored from the

initial value of ES:EDI) are available for contribution to the application entropy pool.

14 In general, to avoid buffer overflow problems, the XSTORE return buffer should always contain at least
8 allocated bytes (regardless of EDX setting).

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 37 OF 41

For systems that perform entropy estimates, the application may assume that the 8-bytes

of output contain 48 bits of entropy.15

5.4.4. Maintaining an Entropy Pool

Output from the Nehemiah RNG should normally be used to seed an entropy pool. The

output can be used to directly seed an entropy pool as performed by the UNIX

/dev/random driver.16 The output may also be used to seed an intermediate entropy pool

that is periodically hashed and contributed to a primary entropy pool, as in the Yarrow

PRNG.17 While relative abundance of high quality output provided by the Nehemiah

RNG can ease design concerns, developers should always avoid re-designing security

code if a free and well-reviewed design already exists. At a minimum, a single secure

application may use a cryptographically strong “whitening” function to mix RNG outputs

together. A suitable example would be the SHA-based random-number generator

described in FIPS 186-2.18

The following are usage recommendations are provided:

• The developer should define a value for entropy_min, or the minimally acceptable

level of entropy. For security applications, entropy_min should be at least 128

bits. As a security bound, no more than 2entropy_min /2 bits (e.g., 264 bits) should be

extracted from the PRNG before it has been completely reseeded. (This is not

generally a practical concern, as entropy_min should be large enough that it is

infeasible to obtain 2entropy_min /2 output bits.)

• The PRNG should have an entropy pool at least twice the size of the level of

security desired. For security applications, the PRNG should have a pool of 128

bits at an absolute minimum, and a pool of at least 256 bits is strongly

recommended.

15 This is consistent with an entropy estimate of 0.75 bits per whitened output bit. Sensitive applications
can further derate this entropy estimate with minimal penalty.
16 The Linux programmers manual for /dev/random can be found at http://www.rt.com/man/random4.html.
17 Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic Pseudorandom Number
Generator, by J. Kelsey, B. Schneier, and N. Ferguson, http://www.counterpane.com/yarrow.html.
18 Appendix 3.1 of FIPS 186-2, http://csrc.nist.gov/publications/fips.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 38 OF 41

• On initialization, the Nehemiah RNG should contribute four times19 the

minimally acceptable level of entropy to the entropy pool. For example, if a

minimum entropy level of 256 bits is required, 22 XSTORE calls should be

performed.20 The initialization code should also verify that the RNG does not

output all “0” or all “1” bits. The complete initialization process should finish in

under 0.5ms.

• Because the XSTORE command returns quickly if no data is present in the FIFO,

time-sensitive resources (such as /dev/random) may call XSTORE multiple times

before adding the contents of the return buffer to the pool (4 consecutive calls to

XSTORE generally exhausts the FIFO).

5.5. Random Numbers for Non-Secure Applications

Although post-processing is recommended for all hardware-based entropy sources, some

developers of non-secure applications may elect to use the Nehemiah RNG without

hashing or mixing. Such developers applications should consider the following

procedures:

• Boot-time initialization. At system boot, the RNG should be initialized as

recommended above.

• Application initialization. At application start, the presence of the RNG should be

verified as recommended above, with the exception that calls to extract random data

from the RNG should use the procedures below.

• Extracting random data. The XSTORE command should be setup and called as

recommended above, except that:

o When preparing for the XSTORE call, the two lowest bits of EDX should be

set (EDX=0x00000003). This discards FIFO data (7 of every 8 bits are

discarded) to increase the temporal distance between adjacent bits.

19 The suggestion of a 4X safety factor does not reflect a specific concern about the RNG design. Instead,
the high performance of the Nehemiah makes it practical to add a sizable safety margin for critical
operations.
20 256 bits entropy * 4X safety factor / 0.75 bits entropy per output bit / 64 bits per XSTORE call = 21.33
XSTORE calls.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 39 OF 41

o XSTORE returns 0 or 1 byte of data (instead of 0 or 8 bytes).

o If the MSR register (as copied to register EAX) does not match the criteria

listed in Section 5.4.3, it may still be possible to use the data byte. (This

would be an application-specific decision).

o Although the data should be of sufficient quality to pass most randomness

tests, the application should not be provided with a formal entropy estimate.

6. Closing Commentary

The Nehemiah random number generator meets the overall design objective of providing

applications with a high-performance, easy-to-use random number generator.

Entropy. Cryptography Research tested multiple processors in a range of environmental

conditions, oscillator stop/start usage patterns, and conditions found in multi-application

environments. In tests of the raw source (with the whitener disabled), Cryptography

Research obtained entropy estimates of 0.78 to 0.99 bits of entropy per raw output bit.

Operation with the whitener enabled is believed to provide 0.99 bits (typical) of entropy

per output bit. We recommend that applications requiring high quality randomness use

the RNG as a source of random seed data for a cryptographically strong PRNG or mixing

function. When seeding, applications should assume that the RNG provides 0.75 bits of

entropy (or less) per output bit, although even more conservative values should be used if

there is no significant performance impact.

High output rates. The RNG generates output at significantly higher rates than most PC-

based randomness resources. Raw bits are produced at rates of 30 to 50 Mbits/sec, and

whitened bits were observed at rates of 4 to 9 Mbits/sec. We estimate that PRNGs

seeded with the Nehemiah RNG can sustain output in excess of 2 Mbits of entropy per

second, which should eliminate blocked PRNG reads in virtually all applications. Even

more important, the high bit rates enable sensitive applications to use more conservative

per-bit estimates of entropy with little performance penalty.

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 40 OF 41

On-die location. Unlike all PC-based random number sources known to the authors, the

Nehemiah RNG is located entirely on the microprocessor die. This location provides

applications with convenient and well-controlled access to the RNG. It is also the most

logical location to place a system security component. Although the Nehemiah processor

is not designed to serve as a platform for tamper-resistant applications, this location also

increases the effort required to physically tamper with the RNG subsystem.

Multi-application support. The RNG is well designed to support simultaneous use by

multiple applications. Only OS-level (ring 0) code is provided with write access to the

RNG configuration register. Because XSTORE copies the MSR settings to user space,

applications may validate the RNG configuration on each XSTORE call. RNG data is

only output once, and altering any MSR settings flushes any unread RNG data. Future

hardware versions can further improve application separation by discarding more bytes

(and therefore increasing temporal distance) between filling the 8-byte FIFO buffers.

Excellent visibility of raw source. The ability to disable the RNG whitener and adjust the

EDX divider enables a wide set of tests to be meaningfully applied. The designers should

be commended for including raw source access and 1:1 divider access, enabling

application developers to perform source validation and improve their levels of source

assurance. These features will enable a significantly larger population of developers and

researchers to study the RNG source.

User options. The provisioning of many user settings (bias, string filter, EDX divider,

and whitener settings) is a double-edged sword. Some features, such as bias adjustment

and string filtering, are beneficial for testing and for advanced developers of embedded

systems with unusual requirements, but could cause problems if used in multi-application

systems. The Nehemiah balances these challenges by limiting configuration changes to

ring 0 code while allowing all applications to verify that the device is properly

configured.

Manufacturing test. Documentation states that Nehemiah parts failing RNG

manufacturing tests will have the RNG permanently disabled. While application

software can detect a disabled RNG, the presence of Nehemiah parts without an RNG

VIA C3 NEHEMIAH RNG EVALUATION

FEBRUARY 27, 2003 CRYPTOGRAPHY RESEARCH, INC. PAGE 41 OF 41

capability may contribute to end-user confusion. (This manufacturing choice provides

VIA with the assurance that the RNG feature will not reduce the manufacturing yield. As

VIA gains experience manufacturing RNG-enabled parts, procedures for handling parts

that fail manufacturing tests may change.)

Our analysis indicates that the Nehemiah core Random Number Generator is a suitable

source of entropy for use in cryptographic applications. The RNG can be easily

incorporated within existing software applications and operating systems and functions

well within a multi-application environment. The device meets the overall design

objective of providing applications with a high-performance, high-quality, and easy-to-

use random number generator.

