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1. Introduction 

Randomness is required for a variety of computational, statistical, and security-related 

applications.  In particular, random numbers and the processes used to generate them are 

a critical component of secure protocols and cryptographic key generation.  Security 

processes that lack adequate sources of randomness will have poor security. 

Cryptography Research has evaluated the C3 Nehemiah random number generator, which 

is an on-chip component of the VIA Technologies Nehemiah processor core.  When 

properly used, the generator was found to be a consistent, high-rate source of entropy 

which we believe is suitable for use in cryptographic and high-assurance applications.  

This report analyzes the Nehemiah RNG design, provides an entropy analysis of the 

source, and provides developer recommendations for proper use of the Nehemiah RNG.  

Cryptography Research provided no Nehemiah design assistance to VIA Technologies or 

Centaur Technology. 

2. Background 

2.1. Applications Requiring Randomness 

In general, random numbers can be summarized as numbers that are indistinguishable 

from outcomes that would arise purely by chance.  The quality of a random number 

generator is often measured by the degree to which it produces unpredictable and 

unbiased output. 

Many cryptographic protocols require secret numbers.  For example: 

• Conventional encryption requires the generation of unguessable keys. 

• The computation of a digital signature with the Digital Signature Algorithm 

requires, besides the signer's private key, a value customarily called k that must be 

secret, and that must not be re-used. 
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• Standards for message encryption using the RSA algorithm generally require the 

use of random numbers to form message padding. 

• Many challenge-response protocols require the use of a unique number, or nonce.  

In practice, a good way to produce a number with a large likelihood of being 

unique is to use a sufficiently large random number. 

Random numbers are also widely used in numerical simulations, gaming, statistical 

analysis, and distributed computations.  While a high quality random source is always 

best, randomness requirements vary among applications.  For example, numerical 

simulations often require random numbers that are unbiased, but have fewer 

unpredictability requirements.  In contract, cryptographic applications often have 

extremely strong unpredictability requirements but may be slightly tolerant of biased 

information.  While this report focuses on the use of the Nehemiah RNG for 

cryptographic applications, the results may be applied to other applications. 

2.2. Sources of Randomness 

Randomness can be found in several places, the more noteworthy of which we will now 

discuss. 

Quantum Phenomena.  Devices have been specifically designed to translate quantum-

mechanical uncertainty into random digits, typically harnessing radioactive decay (the 

classic case being Rand Corporation's book, "A Million Random Digits", published in the 

1950's).   

Thermal Noise.  Excluding quantum mechanics, the behavior of physical systems is 

deterministic (e.g. given a complete description of a system, one can compute its future 

behavior).  While this appears to make random number generation impossible, the fact 

that matter is composed of particles endowed with disorganized thermal motion makes it 

impossible, for practical purposes, to achieve a complete description of a system.  

Accordingly, the places where thermal motion affects a circuit's behavior offer sources of 

effective randomness. 
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For example, where electrons must surmount a potential barrier to move from one 

conductor to another, each electron's thermal motion may help it or hinder it in crossing 

the barrier, so that the total charge transferred during some time window varies. 

Similarly, thermal movements of silicon atoms in a small region of the crystal lattice 

momentarily affect current flow through that region, again affecting the charge 

transferred during any given time window.   

External Influences.  Cosmic rays, temperature fluctuations, supply-voltage variations, 

and stray electromagnetic fields may change a circuit's behavior and are generally 

considered to be unpredictable enough to be counted as contributing to cryptographically 

useful randomness. 

Timings of network message arrivals, keystrokes, mouse movements, and disk-operation 

completions are also often collected to contribute to random number generators' “entropy 

pools1.”  While this practice can be effective, the process of data collection is often 

cumbersome to implement.  Because the possibility exists for sampled events to be 

determined or observed by non-random (or hostile) processes, it is difficult to provide a 

reasonable estimate as to the amount of entropy contributed by each event.  Finally, it is 

difficult to collect entropy in systems where no human is present or in systems where the 

contents of the entropy pool may be visible to hostile processes.   

Chaos.  A deterministic system is called chaotic if an infinitesimally small perturbation to 

its initial conditions produces a change in its behavior that grows exponentially with time.  

While chaos is a concept completely different from randomness, it is important in 

random-number generation for the following reason: If an RNG is chaotic, and if there is 

some inescapable uncertainty in any contribution to its state (e.g., due to thermal noise), 

then simply by waiting for a certain length of time, namely the time required for the 

exponential growth of that uncertainty to reach the magnitude of the system's gross state, 

we can assume that the state of the system is unknowable. By waiting a sufficient length 

of time between samplings, is may be possible to sample high-quality random bits from a 

chaotic system that is otherwise deterministic.   
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3. Design Overview 
Cryptography Research obtained RNG design information from tests on Nehemiah 

processors, as well as documentation, source code, and conversations with engineers at 

Centaur Technology.  This section contains a high-level overview of the RNG design and 

operation. 

3.1. Entropy Source 

The RNG hardware comprises two parts: a raw-bit generator that serves as an entropy 

source and digital post-processing circuitry. The raw-bit generator produces somewhat 

random bits which the design assumes will have imperfect statistical properties.  The 

post-processing circuitry then uses “whitening” and bit discarding to improve the 

statistical properties of the imperfect random bits. 

Raw bits are generated by using a slow freewheeling oscillator (configured by bias inputs 

to 20-68 MHz) to clock the sampling of a fast freewheeling oscillator (configured by bias 

inputs to 450-810 MHz). This approach is good if the jitter in the slow oscillator (i.e., 

cycle-by-cycle variations in the oscillator's period) is comparable in magnitude to the 

period of the fast oscillator.  In the case of this RNG, the jitter of the slow oscillator is 

increased by deriving an internal oscillator bias current from two additional fast 

oscillators.  Thermal noise, manufacturing variations, temperature, software settings, and 

local electrical conditions are expected to cause oscillator variations and contribute 

entropy to the sampled output.  A diagram of the source follows. 

                                                                                                                                                 

1 See RFC 1750 at http://www.ietf.org/rfc/rfc1750.txt 
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Figure 1: Nehemiah entropy source design 

Oscillator operation.  As shown above, oscillators A, B, and C are identical free-running 

ring oscillators, centered at 450-810 MHz.  A single software-controlled bias voltage2 is 

used to adjust an internal current supply and effectively change the operating frequency 

of the oscillators.  This bias voltage is intended to be static and to be set only on system 

reset.  Oscillators A and B are independently divided by 8, which should generate two 

independent oscillatory signals with periods of ~14ns (at the default bias setting).  These 

independent signals are combined with the XOR operation, and used in conjunction with 

the bias voltage to modulate oscillator D.  A computer model of the system yielded the 

following sample result of the XOR output: 

                                                 

2 Set to one of 8 values (via bits 12:10 of MSR 0x110B). 
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Figure 2: Output from software-based model of oscillator behavior 

Oscillator D is a slower version of the above oscillators, centered at approximately 45 

MHz.  It serves as the RNG sampling clock and is used to clock a flip-flop that samples 

oscillator C.  The bias voltage for oscillator D incorporates the same bias voltage as the 

above oscillators, but also includes the combined XOR output from oscillators A and B. 

Whitener.  Pairs of bits in the sampled output are then passed through a von Neumann 

whitener, which operates on two new bits at a time (once for every 2 periods of oscillator 

D).  The von Neumann whitener is designed to reduce bias from the sampled data and 

operates in the following fashion: 

Input  
(bits discarded  
after use) 

Corrector Output 

0 0 No output (no shift register activity) 

0 1 Output = 0 (shift "0" into shift register) 

1 0 Output = 1 (shift "1" into shift register) 

1 1 No output (no shift register activity) 

The whitening circuitry supports a "raw bit bypass" mode, in which each bit sampled 

from oscillator C is clocked directly into the shift register.  This mode provides 
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convenient access to RNG internals for testing purposes.  (Most of the entropy tests 

performed by Cryptography Research were performed on the raw source.) 

Shift register operation.  The shift register shifts in whitened bits as they become 

available.  After 8 bits of information have entered the shift register, one byte is 

transferred to the digital subsystem FIFO and the next incoming bit is discarded.   

Power control.  Control logic can instruct the entropy source to enter a low-power mode, 

where oscillator internal bias currents are removed (effectively removing power from the 

oscillators).  When exiting low-power mode, the contents of the shift register are 

discarded and the next complete byte destined for the shift register is also discarded. 

3.2. Digital Hardware and Firmware 

The datapath and microcode subsystem are primarily responsible for supplying the 

microprocessor with random bytes when they are requested.  The digital block shares the 

primary microprocessor clock, maintains a 32-byte FIFO queue (comprised of four 8-byte 

buffers), controls software reads, and permits adjustment of RNG parameters.   

Registers and commands.  The RNG is controlled through a 32-bit status/configuration 

register (MSR 0x110B), which is accessible only to ring 0 code.  RNG data are read via 

the XSTORE instruction, a Nehemiah specific x86 command.  Based on the 2-bit divisor 

setting, 1 to 8 bytes of the FIFO memory are copied to user memory on each successful 

XSTORE call.  The XSTORE command also copies the contents of the MSR to user 

memory. 

Queue management.  Data is transferred from the entropy source to the FIFO on a byte-

wise basis.  Each XSTORE instruction consumes either zero or 8 bytes of FIFO memory. 

(Zero bytes are consumed if not enough data is available.  Otherwise, 8 are consumed.)  

The hardware prevents "stale" data from being re-read, and also marks all FIFO data stale 

when any RNG configurations are changed.  The entropy source oscillators are powered 

down when the FIFO is full (see power control section below). 
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Power control.  The digital subsystem powers off the entropy source when the RNG is 

not enabled, or when the FIFO is full.   

Selectable filter: XSTORE divisor.  The XSTORE command consumes 8 bytes of FIFO 

memory unless fewer than 8 FIFO bytes are available, in which case no bytes are 

returned.  The XSTORE command takes a 2-bit divisor parameter, which is used to 

discard (2divisor – 1) bits for each bit returned to user memory.  For example, a divisor of 0 

will result in 8 bytes of output data, while a divisor of 3 will result in 1 byte of XSTORE 

output. 

Selectable filter: String filter3.  When activated, the string filter discards new bytes from 

the entropy source if the new byte would otherwise cause bytes entering the FIFO to 

exceed a maximal number of consecutive “1” or “0” bits (where the limit is a 6-bit 

configurable parameter).  The filter also has an “alarm” bit that is set if any bytes have 

been discarded. 

4. Entropy Analysis 

4.1. Background on Entropy  

Entropy is used by cryptographers as a measure of unguessability or incalculability. If a 

secret value (such as a key) is chosen by a process that gives n bits of entropy, then the 

average number of tries required to guess that value by exhaustive search is 2n-1. Entropy 

is conveniently additive: the entropy of the combination of two independently chosen 

values is the sum of their individual entropies. Because of this additivity, it makes sense 

to speak of the entropy per bit of a bit source and to compute the number of bits that must 

be combined to make a secret key of a given strength.  

When a bit generator produces serially correlated bits, successive bits are not 

independent, and their entropies cannot be meaningfully added. However, the useful 

                                                 

3 Use of this feature is not recommended except for testing purposes. 
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notion of per-bit entropy can be restored by calculating the entropy of the distribution of 

strings of n successive bits (for some n large enough to encompass the effects of the serial 

correlation) and dividing by n. This per-bit estimate may understate the entropy of 

individual bits or of short strings of bits, but this conservative estimate is appropriate in 

security applications.  

In an analysis of this kind, one generally doesn't arrive at a specific figure for the per-bit 

entropy of a bit source.  Instead, one establishes an upper bound on the entropy, typically 

by identifying unequal distributions or patterns in sequences of output bits; and 

sometimes one derives a lower bound on the entropy, perhaps from theoretical arguments 

or perhaps by reasoning from analog measurements on the system. Just as no statistical 

test can prove the randomness of a bit source, no statistical test on output bits can 

establish a lower bound on entropy.  

The upper bound on the entropy estimate allows us to warn convincingly against 

procedures that are demonstrably inadequate. For example, if a hypothetical bit generator 

has been shown to provide only 1/2 bit of entropy per output bit, it is easy to dissuade an 

application programmer from constructing an 80-bit secret key by simply reading 80 bits 

from that bit generator. At the other extreme, a lower bound is the only firm assurance for 

the most cautious user, who will typically divide his entropy requirements by the lower 

bound to determine the number of RNG bits that he should hash together to make a key. 

Establishing any sort of lower bound is difficult, and it is not unusual for the upper and 

lower bounds to differ by orders of magnitude. 

4.2. Tools and Approaches 

In the studies described here, the RNG was run in its most vulnerable mode: the von 

Neumann whitener was turned off, and every bit clocked into the shift register was read 

and examined. As expected, the output in this mode is unsuitable for numerical 

applications; the bits produced are statistically imbalanced and fail all sensitive statistical 

tests.  However, this mode makes it is easier for to find any nonrandom behavior that 

might cause problems and would be more difficult to detect when operating in other 
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modes . (In particular, the prudent user will run the RNG with the von Neumann whitener 

turned on, and may set the EDX divider to use a subset of the output bits, both of which 

are designed to improve the quality of the random bits produced by discarding bits that 

are more likely to be correlated.)  

To find an upper bound on per-bit entropy, we have used two general approaches:  

• Computing entropies of distributions. Given a large sample of RNG output, we 

tally the number of occurrences of all n-bit patterns, for n up to 24. We then 

compute the entropy of this distribution and divide by the number of bits.  

• Measuring the "predictability" of bits. Given a large sample of RNG output, we 

build a predictor that attempts to predict the value of any bit from the values of 

bits immediately around it in the sequence. If the success rate of the predictor is p, 

the entropy of the bit being predicted is taken as ( ) ( ) ( )pppp −−−− 1log1log 22 .  

4.3. Aspects Studied 

Several different aspects of RNG operation were studied:  

• Normal operation. Tests were performed to determine if non-random behavior 

was detectable in the raw output.  Output sufficiently biased to introduce 

weaknesses in security applications will normally make an RNG fail standard 

statistical tests. 

• Bias variation. The 3-bit bias setting4 affects the periods of all four source 

oscillators.  Variations in the bias setting may affect the RNG output. 

• Chip variation. Differences in manufacturing lot or wafer position may affect the 

RNG source operation.  The authors received four Nehemiah chips of varying 

speed grades and performed testing on all four chips. 

                                                 

4 Note: the bias setting can be treated as a 2’s complement number, where bias=0 is the center and bias=3 / 
bias=4 represent bias extremes. 
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• Startup behavior. Because the oscillators are stopped when the accumulation 

buffers are full, XSTORE operations are likely to include data from freshly 

started oscillators. It seems reasonable to suspect that oscillator startup is to some 

extent reproducible, so initial RNG bytes may tend to be the similar across 

XSTORE calls returning startup data.   

• Die temperature. The temperature of the processor die could affect the operation 

of the RNG oscillators in ways that reduce the quality of RNG output.   

• Local correlation. In multi-application environments, a potentially hostile process 

could access the RNG immediately before or after a secure process executes the 

XSTORE operation. Therefore, any bit correlations across consecutive XSTORE 

operations may detract from the quality of RNG output. 

• Varying processor activity. Varying levels of CPU activity may affect the 

properties of the RNG output. 

4.4. Results 

4.4.1. Normal Operation 

To study RNG behavior under normal (continuous) operation, samples of slightly more 

than 5 gigabytes of raw output were taken from several different processor chips at all 8 

possible bias settings. These samples were analyzed for the apparent entropy of the 

distribution of 16-bit values, the bias of single-bit frequencies, and the predictability of 

individual bits within 16-bit fields. The results for one of the processor chips are 

presented in the following figures.  
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Figure 3: Entropy during continuous RNG operation (raw output) 

 

  

Figure 4: Predictability during continuous RNG operation (raw output) 
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A worst-case predictability of 72% implies an entropy of only 0.855 bit, notably smaller 

than the 0.95-bit-per-bit entropy of the overall distribution. This difference is expected, 

since the displayed predictability value is the highest of the 16 bit positions, while the 

overall entropy figure reflects also the 15 other, apparently less predictable, bit positions. 

In addition, the predictability measure also assumes knowledge of all other bits.5  Thus, a 

large difference between the entropy of the distribution and the entropy inferred from the 

highest predictability indicates differences in bit-to-bit predictability.  

We say that other bits are apparently less predictable, because the RNG generates bits for 

all positions in the same way, so we do not expect that some bit positions within our 

arbitrary 16-bit framework could be intrinsically more predictable than others. The 

appearance of a difference stems from the fact that we are predicting the value in one bit 

position based on the values in the other 15 positions, and the predictive value of those 

other 15 positions presumably varies depending on their dispositions relative to the bit 

being predicted. In practice, the most predictable positions tend to be near the center of 

the 16-bit window. It is important to note that other bit positions would probably be just 

as predictable, if we kept a larger context of adjacent bits on which to base our 

predictions.  It is also noteworthy that the RNG discards a bit between bytes.  As a result, 

bits adjacent to the byte boundary are less predictable because only one neighboring bit is 

known.  To be conservative, one should assume that the worst predictability score applies 

to all bit positions.  

The following lessons were drawn from the test results:  

• The entropies of the distributions are consistent with a raw source of generally 

good quality.  These tests yield candidate upper and lower entropy bounds of 0.85 

to 0.99 bits per bit of raw output, respectively. 

                                                 

5 A simple example is the case where a two-bit value is evenly distributed between the two outcomes {0,0} 
and {1,1}.  The distribution’s entropy is 1 bit (0.5 bit per output bit), but the predictability of each bit 
would be 1, implying an entropy of zero.  Since one cannot be certain that adversaries will not have access 
to prior or subsequent output bits, the entropy implied by the predictability is a more conservative measure 
of the entropy of the output  
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• There is a fairly consistent tendency for bits to be predictable at about the 70% 

level. While some bias settings (in particular, bias = 2) appear to yield higher 

levels of unpredictability, the relatively small sample size does not allow 

conclusive evidence of a trend. Accordingly, the conservative interpretation is that 

raw, continuous bits from the RNG can be predicted at a 70% predictability rate, 

yielding approximately 0.88 bits of entropy per bit of raw output.  

• The single-bit distribution tends to be a few percentage points off the desired 50-

50 (not shown).  This discrepancy is trivial compared with the predictability, and 

is substantially reduced (but not completely eliminated by) the whitener.  

The predictability figures indicate that the RNG favors certain patterns of behavior. Some 

questions about these patterns come to mind.  

• Do these patterns persist over time?  

• Do the same patterns apply at different bias settings?  

• Do different chips have the same patterns?  

To study the patterns' persistence over time, four separate samples of 5.24 gigabytes each 

were taken. The samples were named 1a, 1b, 1c, and 1d. Patterns found in samples 1b, 

1c, and 1d were used to attempt to predict bits in sample 1a. This process was repeated at 

each of the 8 bias settings. The results appear in the following figure. 
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Figure 5: Predictability across runs (raw output) 

Observations:  

• Patterns from runs 1b and 1c are relatively effective at predicting the bits in run 

1a, while run 1d is conspicuously less good. Since runs 1a and 1d were spaced 

further apart, likely patterns may be dependent on local environmental conditions.  

• The bias setting of 2 is again seen to be less predictable than other bias settings, 

which would indicate that bias=2 may yield higher quality output. 

To study the persistence of patterns from one bias setting to another, we used the 8 "1a" 

samples from the preceding study, and measured how well the tables built at one bias 

setting predicted bits at another bias setting. The results appear in the following table.  
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Figure 6: Predictability across bias settings (raw output) 

Observations:  

• Changes in bias yield gradual changes in RNG output patterns.  For example, 

results from bias 5 are most effective at predicting the results from bias 5, are 

somewhat less effective at predicting results from biases 4 and 6, and are 

progressively less effective at predicting other bias settings.6 

• Biases 1 and 3 are relatively individualistic, while bias 2 is, again, especially 

unpredictable.  This suggests that bias 2 may provide a “local maximum” for 

pattern unpredictability. 

To study the commonality of patterns between chips, we compared, at each bias setting, 

5.24-gigabyte samples taken from chips arbitrarily named 1, 3, and 4. (For chips 1 and 3 

we had multiple data sets, of which we used the first, 1a and 3a.) The results appear in the 

following figure.  

                                                 

6 Note: the bias setting can be treated as a 2’s complement number, where bias=0 is the center and bias=3 / 
bias=4 represent bias extremes. 
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Figure 7: Predictability across chips (raw output) 

Observations:  

• With one exception, one chip's patterns are not particularly useful for predicting 

another chip's bits.  (A 50% chance of predicting a bit correctly means that the bit 

is effectively random.) 

• At bias=1, chips 1 and 4 appear to bear a strong resemblance to each other.  

• Bias = 2 appears to be notably less predictable in all three chips. At this bias, the 

self-predicting success rate is below 61% for all three chips.  

We can conclude that continuous usage of the RNG yields mildly predictable RNG 

behavior, yielding a “worst case” entropy of about 0.85 bits per raw output bit under 

predictability analysis. While predictability patterns were found to vary with oscillator 

bias settings, no bias settings were particularly poor (although the bias=2 setting appears 

to yield somewhat higher entropy).  In addition, the results also suggest that RNG 

behavior may be affected by chip-specific differences, such as manufacturing or die 

temperature, although a larger sample size is required to assert this claim. 
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4.4.2. Startup Behavior 

A program was written that reads 8 bytes from the RNG, then pauses long enough to 

ensure that the accumulation buffers become full and the oscillators are therefore stopped 

before reading the next 8 bytes, repeating 12.5 million times. Counters tally the number 

of occurrences of every possible 16-bit value in each of the seven pairs of adjacent bytes, 

a total of 7 * 65,536 counters. For each of the seven byte pairs, the table of 65,536 tallies 

was processed to compute the classical Shannon entropy of the distribution. Also for each 

set of tallies, the best single-bit predictor was found and its success rate computed. For 

example, it might be found that the bit in the 0x0020 position can be correctly predicted 

with 68% success based on the remaining 15 bits.7  

The results are presented in the following Figure. As described previously, the 

distribution entropy is significantly higher than entropy implied by the predictability the 

target bits. 

 
Figure 8: Entropy and predictability at startup (raw output) 

                                                 

7 This measure overstates the actual predictability, since the predictor was used on the same data that was 
applied to train it. Fair tests, applying the predictor to an independent set of tallies, were occasionally done 
to assess the magnitude of the overstatement. 
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These results contradict the hypothesis that the oscillators might come up in some 

repeatable relationship, and support information received from Centaur on the relatively 

fast startup-timings for the RNG oscillators.  In particular, the computed entropies (by 

distribution and by predictability measurement) are higher for earlier startup bytes.  

Therefore, applications reading RNG data generated at oscillator startup do not seem to 

be adversely affected. 

4.4.3. Temperature 

By regulating power to the processor cooling fan, the surface temperature of the chip was 

held within 3 degrees Celsius while consecutive samples of 512MB were read from the 

RNG. Occurrences of all pairs of consecutive bytes were tallied, resulting in 524,287,999 

tallies in 65,536 bins. From these tallies, the following entropy and predictability figures 

were computed.  

  

Figure 9: Temperature effects (raw output) 

A very mild deterioration of the statistics is observed as the temperature rises.  
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4.4.4. Processor Activity 

Three runs with consecutive samples of 512MB were made under different processor 

loading conditions.  The results are presented in the following table.  

CPU Load  single-bit bias  per-bit entropy predictability  
none  50.99  0.955  71.0  

low-priority  
competing process 50.99  0.952  71.8  

high-priority 
competing process 51.00  0.952  71.79  

In general, competing processes are expected to increase the number of shutdown/startup 

cycles of the RNG oscillators, as process timeslicing increases the delays between 

subsequent XSTORE operations.  We conclude that competition for the processor does 

not significantly affect the quality of the RNG output. 

4.4.5. Modeled Operation 

A program was written to simulate the simplest complete model of this RNG.  This 

model system is deterministic and is characterized by the periods of the three fast 

oscillators, the two periods of the slow oscillator, and the four oscillators' phases. 

Changes to the slow oscillator's period were considered to happen instantaneously, and 

were made in such a way as to preserve the phase angle of the oscillator at the instant of 

change.  An example of the modeled output of the XOR is shown in Section 3.1. 

The simulator was used to study the effects of RNG parameters on the RNG output and to 

analyze the characteristics of deterministic models of the system.  The simulator 

generates output with spectral content that differs substantially from the RNG output and 

from the output of a cryptographic PRNG.8  However, the simulator output passes the 

FIPS-140 test suite fairly consistently (14 failures out of 320 tests). With whitening 

enabled and EDX=2, the simulator output passed all tests in the FIPS-140 suite.   

                                                 

8 Spectral content was measured with FFT and autocorrelation tests. 
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Tests with the simulator provide a cautionary note: as with most oscillator-based RNG 

designs, there is no obvious test that can prove that the output is truly random instead of 

the result of a complex and unknown deterministic process.  Although our simulator 

analysis and statistical tests are suggestive of high quality, RNG users for security 

applications should always make the most conservative choices possible and, if practical, 

incorporate entropy from all available sources. 

4.4.6. Results from Centaur Technologies Testing 

Cryptography Research was provided with an assortment of statistical tests that were run 

on the output of various chips running in various modes on various processors.  About 14 

different chips were tested.  About half the tests (179,514) were run with undersampled 

output (EDX = 3) and the von Neumann whitener on. The remaining tests (134,301) were 

run at the full sampling rate (EDX = 0), the von Neumann whitener off, and SHA mixing 

of the output bits. 

These tests measure the suitability of the RNG for numerical applications. They are not 

particularly relevant to security applications, since insecure pseudorandom bit generators 

have been known to pass these statistical tests. 

The tests run with SHA mixing all produced excellent statistics. This is unsurprising, 

since good SHA mixing produces excellent statistics for all known input streams.  

Tests run without SHA mixing tended to fail the demanding statistical tests that were 

applied. This does not prove that the random bits are particularly poor, since tests 

encompassing so much data will detect very small flaws in an RNG; but it does indicate 

that applications requiring high quality randomness should not use this RNG without 

mixing. 

It is possible that by experimenting with the bias settings, a setting may be located that 

produces random bits with better statistics. However, every chip might not have such an 

optimal bias setting, and chip performance may drift with time and/or temperature.  To 

minimize the likelihood of a problem, users of this RNG (as well as virtually any other 
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hardware-based entropy source) who require high quality randomness should use 

appropriate mixing functions. 

4.5. Source Whitening: Extrapolating Test Results  

The above RNG tests were performed with the von Neumann whitener deactivated.  The 

usefulness of von Neumann whitening depends on the characteristics of the input 

bitstream and the intended use of the output bits. Specifically,  

• von Neumann whitening works well on bits from memory-less generators.  

• It works less well on bit streams with serial correlations.  

• Its bit-balancing effect is important for numerical work.  

• Under normal circumstances, it will improve the entropy of the output, although 

in some unusual (largely theoretical) situations it can reduce entropy. 

• Its bit-balancing effect is often less important for cryptographic applications 

where post-processing is used to produce high-entropy output from lower-entropy 

sources.  

To illustrate these points, consider the following simple examples.  

Biased, independent bits.  The whitener is ideally suited for input bits that are 

independent but biased. If each bit is 1 with probability p, then the entropy per input bit is 

( ) ( ) ( )pppp −−−− 1log1log 22 , and the average number of output bits produced per input 

bit is ( )pp −1 . These two functions agree nicely, as shown in the following figure.  
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Figure 10: von Neumann correction of biased, independent bits 

The rate at which output bits are produced never exceeds the rate at which input bits can 

be imagined as "bringing entropy" in, so it seems reasonable (and is in fact true) that each 

output bit holds a bit of entropy. In other words, each output bit from a von Neumann 

corrector brings one bit of entropy if the raw bits are independent but biased with any 

probability p between 0 and 1.  

Serial correlation.  Consider a bit generator where the probability that any two 

consecutive bits differ is p. If 2
1=p , this is a perfect random bit generator. If p is small, 

it will produce long runs of identical values, and the whitener will seldom output a bit. If 

p is large (i.e., near 1), it will produce long patterns of alternating 0's and 1's, and the 

whitener will almost always output a bit. The corresponding plot for this generator 

follows. Toward the right-hand side of the chart, the rate at which bits are output exceeds 

the rate at which entropy enters the system; and indeed, the entropy per output bit falls 

sharply. In this region, a strong serial correlation remains among the output bits..  
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Figure 11: von Neumann correction of serially correlated bits 

While the whitener is less effective at handling serially correlated bit data, these diagrams 

suggest that the whitener will at least improve the per-bit entropy of whitened bits in this 

case.   

A series of whitened 512MB samples were taken from a single processor.  As expected, 

the results had bit biases that were substantially smaller (within 0.015% of an expected 

50-50 distribution), but still detectably imbalanced.9  The worst-case bit predictability 

(calculated by predicting an output bit with knowledge of the 15 neighboring bits) was 

reduced to 55.1%, yielding entropy measurements of 0.99 bits of entropy per bit.  The 

serial correlations of the output bits also diminish more quickly, as illustrated in the 

following two diagrams.10 

                                                 

9 For this sample size, one standard deviation is 0.00156%, so the whitened distribution can still be 
considered statistically imbalanced. 
10 Serial correlation is viewed by plotting the percentage of 1's as a function of position after a 1 in the 
high-order bit position of a byte. (Ordinarily, positions after all 1 bits would be computed, but this 
weighing is used to avoid corruption by the missing bit after every byte.) 
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Figure 12: Serial correlations diminish more quickly when whitener is enabled 

It is important to note that van Neumann correction can, at least in theory, reduce the 

entropy from a source.  For example, a source whose output alternates between “0” bits 

and random bits contains 1 bit of entropy for each two output bits.  Applying the whitener 

to this source would provide an output sequence of all zeroes (i.e., containing no 

entropy).  Our tests did not reveal any patterns like this or any other output characteristics 

that would cause the whitening step to reduce the output entropy. 

4.6. Entropy Conclusions 

In a limited set of tests, the raw RNG source was found to have measured entropies 

between 0.78 bits per output bit and 0.99 bits per output bit.  Changes in bias, 

temperature, stop/start behavior, and processor were not found to significantly reduce the 

RNG output quality.  Use of the von Neumann corrector is expected to improve the 

quality of the output and was observed to do so rather substantially.   

Overall, we believe that the Nehemiah RNG provides a high-quality and consistent 

source of entropy.  In normal operation (whitener enabled, EDX divisor set to zero), users 

should typically obtain over 0.99 bits of entropy per output bit.  In applications where the 

quality of the randomness is critical, developers should make more conservative 

assumptions about the randomness of the output.  Our most conservative interpretation of 

our results suggests that sensitive applications should be able to assume that the 

Nehemiah RNG, after whitening and with EDX divisor set to 0, provides at least 0.75 bits 

of entropy per output bit.  (In practice, we recommend that developers make even more 
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conservative assumptions, since the high data rates offered by the Nehemiah RNG allow 

the collection of extra output without any significant performance penalty.) 

5. Usage Recommendations 

5.1. Usage Modes  
This section describes recommended procedures for the use and initialization of the 

Nehemiah RNG.  It is addressed to three primary audiences: 

• Developers of OS-level resources.  The Nehemiah RNG serves as a fast, high-quality 

entropy source for existing randomness resources (the /dev/random and /dev/urandom 

UNIX resources are perhaps the most well known).  Because these resources can be 

used by a variety of applications, developers of OS-level randomness resources must 

incorporate the RNG in a manner that produces cryptographically strong random 

numbers, makes appropriate entropy estimates, operates efficiently, and resists attacks 

where “hostile” and “trusted” code may share the same resource.  

• Developers of high-security applications.  Some high-security applications (such as 

key generation and challenge-response protocols) require that individual applications 

be provided with a cryptographically strong source of randomness.  Developers of 

these applications may want to increase assurance by obtaining random data directly 

from the Nehemiah RNG as (or in addition to) their primary randomness source. 

• Developers of non-secure applications with lower entropy requirements.  Some 

applications (such as those that currently use the C “rand()” function) typically 

have less stringent entropy, security, and statistical requirements. 

Our usage recommendations are primarily designed for applications where an extremely 

high quality source of randomness is required.  Developers of non-secure applications 

that do not require such high quality randomness (the third category) can always elect to 

use these numerically-conservative methods for random number generation.  Alternately, 

developers can use OS-level randomness resources that incorporate output from the 
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Nehemiah RNG.  Section 5.5 of this document provides guidelines for developers of non-

secure applications who prefer to extract data directly from the Nehemiah RNG.   

5.2. Feeding an Entropy Pool with the Nehemiah RNG 

As with any hardware entropy source, it is recommended that the Nehemiah RNG be 

used as a source of seed data for a cryptographically strong PRNG or hash function.  If 

implemented correctly, cryptographic functions can produce high-quality random data 

(ideally with one bit of entropy per output bit) from a larger quantity of source data with 

less than one bit of entropy per bit. 

In such a design, output from XSTORE calls is incorporated into a buffer by a process 

referred to as seeding an entropy pool.  The entropy pool may be occasionally 

compressed or “stirred” with a mixing function, which combines entropy across RNG 

data.  Finally, application requests for random numbers are served by an output function, 

which transforms data in the entropy pool to generate outputs that can be used as random 

numbers by the application. 

1. SEEDING

2. MIXING

3. OUTPUT
Source

FIFO
and Filters Entropy Pool Output

Function

Mixing
Function

XSTORE

C5XL RNG

Application
Request

Random
Bytes

Providing PRNG Seed Data

 
Figure 13: Seeding a PRNG with the Nehemiah RNG 

Because the mixing and output functions are a series of deterministic operations, this 

construction is referred to as a Pseudo Random Number Generator (PRNG) if the design 

allows the number of output bits to exceed the entropy of the seed data.  Cryptographic 

functions can also be employed as part of a true RNG to compress larger amounts of 

partially-random seed data to produce higher-quality output.  A well-designed PRNG 
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serves as an entropy buffer in which the various rates of seeding and output, as well as 

the quality of the seed material, determine the quality of the output.  Cryptographically-

based PRNG designs often use hash functions (such as SHA-1) or modular arithmetic, 

which have desirable properties for mixing and output functions.  A complete discussion 

on PRNGs is outside the scope of this document.11  The use of cryptographic processing 

offers the following advantages: 

• Improved per-bit entropy.  The per-bit entropy of the Nehemiah output can be 

improved by integrating RNG output into a seed pool at a rate greater than the 

rate at which entropy is extracted from the seed pool.   

• The entropy pool has inertia.  The state within the seed pool of a PRNG enables 

bursty applications (such as SSL key generation) to consume random data at a 

rate that temporarily exceeds the bitrate of the source.  

• Protection against some failure modes.  It is difficult to certify that an RNG will 

never experience “hiccups” or local conditions that may result in comparatively 

low entropy output.  A properly-seeded PRNG can “ride out” catastrophic source 

RNG failures while maintaining levels of unpredictability that are suitable for 

many applications.  

• An additional margin of safety.  A properly-constructed mixing function will 

combine entropy that has been collected over time with “fresh” entropy from the 

source.  This will result in output entropy that should be better (or at least no 

worse) than using the source directly. 

PRNGs with better sources of seed data can provide higher-assurance output.  In the 

UNIX /dev/random resource, event and timing data from low-rate events (such as mouse 

movement or process timings) is commonly used for seeding when no hardware source is 

available.  Because estimating the entropy provided by such events is difficult and 

because they occur relatively infrequently, the amount and quality of the seed data 

available to /dev/random is limited.  The Nehemiah RNG provides a consistently high 

                                                 

11 More information on PRNGs can be found in Yarrow-160: Notes on the Design and Analysis of the 
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level of entropy at substantially higher rates.  Using the Nehemiah RNG as a source of 

PRNG seed data should improve the assurance of applications that require randomness. 

5.3. RNG Command overview 

This section introduces specific Nehemiah RNG commands.  Considerably more detailed 

information is available in Sections 3 and 4 of the VIA C5XL Processor Random Number 

Generator Application Note. 

5.3.1. The Configuration MSR 

The RNG is controlled through a 32-bit status/configuration MSR (0x110B).  While the 

MSR itself is only accessible to ring 0 code, most MSR contents are copied to EAX on 

every completed XSTORE operation, and some MSR bits can be probed by examining 

the Centaur Extended CPUID Feature Flags.  It is therefore possible for user applications 

to view (but not change) the status of the MSR. 

Cryptography Research recommends setting the MSR to 0x00000020 (RNG enable, all 

other settings 0) as part of the operating system boot process.  Multi-application systems 

should avoid making any further modifications to this register.  The MSR register settings 

are shown below: 

MSR 0x110B 

31:22 21:16 15 14 13 12:10 9:8 7 6 5 4:0 
Reserved String 

Filter 
Count 

String 
Filter 
Failed 

String 
Filter 

Enable 

Raw bits 
enable 

DC bias Reserved Reserved RNG 
enable 

Reserved Current 
Byte 
Cout 

 Read/ 
Write 

Read/ 
Write 

Read/ 
Write 

Read/ 
Write 

Read/ 
Write 

  Read/ 
Write 

 Read 
only 

Source: Centaur Technology 

Disable string filter (clear MSR bits 21:13).  Because this feature can introduce significant biases in the 

output, it should only be used for testing purposes and should be disabled during normal operation.  (While 

the alarm bit feature, described in Section 3.2, could be used in some applications to detect a catastrophic 

RNG failure, it is difficult to properly handle such alarm conditions in multi-application environments.  As 

a result, applications should implement any required quality monitoring in software.) 

                                                                                                                                                 

Yarrow Cryptographic Pseudorandom Number Generator, by J. Kelsey, B. Schneier, and N. Feguson. 
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Activate von Neumann corrector (clear MSR bit 13).  As discussed in Section 3.1, the corrector discards 

bits to restore a uniform per-bit frequency.  The corrector also increases the temporal separation between 

consecutive bits, which should improve the per-bit entropy. 

Use default bias setting (clear MSR bits 12:10).  The oscillation frequency of each RNG oscillator is 

regulated by the 3-bit bias voltage setting.  While the choice of bias setting is somewhat arbitrary, the 

default setting should be used for cross-application consistency.12  Secure applications should also check 

that the bias setting does not change from the default.  

Reserved bits.  Centaur reports that the reserved bits are currently ignored.  Applications should never set 

any reserved bits. 

5.3.2. The XSTORE Operation 

The XSTORE operation is an extended x86 instruction that can be run from any 

application.  A complete set of documentation for the XSTORE command can be found 

in the VIA C5XL Processor Random Number Generator Application Note.  The following 

recommendations apply to the use of the XSTORE command in security applications: 

• Prior to calling XSTORE, verify that the RNG is enabled.  Using XSTORE 

without a present and enabled RNG will result in an exception or otherwise 

unpredictable behavior.  

• Specify the correct divisor.  On each XSTORE call, the 2 lowest bits of EDX 

specify the divisor, or the rate at which random data is to be returned.  

Applications that fail to specify the divisor correctly may receive fewer random 

bytes then expected. 

• Returned data.  XSTORE may return (or overwrite) up to 8 bytes.  At least 8 

bytes of output memory must be allocated to avoid buffer overruns.  At EDX=0, 

the RNG returns bytes in the following order: older bytes are stored in lower byte 

addresses; within each byte, the most significant bit is the oldest.13 

                                                 

12 While somewhat better statistics have been measured at a bias setting of 2, the bias setting must be 
shared by all applications running on the system.  Future versions of the Nehemiah and successor parts may 
also have slightly different “optimal” settings.  As a result, it is advisable to use the declared default value 
of 0 (as written in the VIA C5XL Processor Random Number Generator Application Note).   
13 Note: the relative byte and bit ordering may change when the EDX divider is nonzero. 
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• Inspect RNG configuration on each call.  Before interpreting data returned by the 

XSTORE call, the application should inspect the MSR configuration (as copied to 

EAX) to ensure that the RNG configuration is correct and unchanged.  Because 

the MSR configuration should be checked on each XSTORE call, the REP prefix 

should not be used. 

5.3.3. Determining RNG Availability 

Before using or initializing the RNG, developers should ensure that a VIA Nehemiah 

processor containing the RNG feature is present.  User-level applications should ensure 

that the RNG is enabled and that SSE instructions are enabled before performing 

XSTORE operations.  Section 3.2 of the VIA C5XL Random Number Generator 

Application Note defines procedures for: 

• Determining if a VIA Nehemiah processor is present 

• Determining if the RNG feature is present (Centaur Extended CPUID Flag 

EDX[2]) 

• Determining if the RNG is activated (Centaur Extended CPUID Flag EDX[3]) 

• Determining if SSE instructions are enabled 

5.4. Recommended Usage Procedures 

5.4.1. Boot-Time Initialization 

At system boot, OS code (ring 0) should initialize the RNG in the following sequence: 

(1) The code should verify that that the processor contains a Nehemiah core with a 

RNG that may be enabled.  This is done by examining the Centaur Extended 

CPUID Flags.  (Consult Section 3.2.2 of the VIA C5XL Random Number 

Generator Application Note.) 

(2) SSE instructions should be enabled, if necessary.  (The RNG feature requires that 

SSE instructions be enabled.  For details, consult Section 3.2.1 of the VIA C5XL 

Random Number Generator Application Note.) 
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(3) Ring 0 code should write the value 0x00000020 to MSR 0x110B.  This will 

enable the RNG, turn on the von Neumann corrector, set the offset bias to zero, 

and turn off string filtering (see Section 5.3.1 for more information about MSR 

settings). 

(4) Finally, the initialization code should also perform a simple RNG usage test (see 

“Application Start Sequence" below). 

5.4.2. Application Start Sequence 

At application start, the RNG should be verified in the following sequence.  An error or 

unexpected result in any step should result in a user-visible error message and should 

prevent the RNG from being used within the application. 

(1) The code should verify that that the processor contains a Nehemiah core with an 

enabled RNG.  This is done by examining the Centaur Extended CPUID Flags, 

particularly EDX[2] and EDX[3].  (Consult Section 3.2.2 of the VIA C5XL 

Random Number Generator Application Note.) 

(2) The RNG feature requires that SSE instructions be enabled.  (Consult Section 

3.2.1 of the VIA C5XL Random Number Generator Application Note.) 

(3) The application should perform at least one XSTORE operation.  This should be 

done as listed in “Extracting Random Data” below.  This section discusses how 

the MSR contents should be validated before RNG use is permitted. 

(4) The application may optionally perform tests of the entropy source.  At a 

minimum, applications should read 16 bytes (using “Extracting Random Data” 

below) and ensure that the bytes are not all “0xFF” and not all “0x00”.  (The 

probability of a correctly-operating RNG failing this test is 2-127, or one in 170 

trillion trillion trillion.) 

(5) If the application requires the initial seeding of an entropy pool, “Extracting 

Random Data” (below) should be repeatedly run until a suitable level of starting 

entropy is achieved. 

(6) If any errors occurred in performing these steps, the Nehemiah RNG should not 

be used and, if possible, an error message should be presented to the user. 
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5.4.3. Extracting Random Data 
The following sequence should be run whenever random data is required:  

(1) Prepare for XSTORE call.  ES:EDI should point to a low-end address of a buffer 

of at least 8 bytes.14  EDX should be cleared (EDX=0) to specify reading all 8 

bytes from the queue. 

(2) Execute XSTORE.  The XSTORE instruction (opcode 0x0F 0xA7 0xC0) will 

return either 0 or 8 bytes of data in ES:EDI.  It will also return the state of the 

MSR register in EAX.  Note that an Invalid Instruction exception will occur if 

XSTORE is executed when the RNG is not enabled.   

(3) The contents of the MSR (which is placed into bits 31:5 of register EAX) should 

be inspected to verify that: 

a. RNG is activated (bit 6 is set). 

b. von Neumann corrector is turned on (bit 13 is cleared). 

c. String filter is deactivated (bit 14 is cleared). 

d. Bias voltage is left at the default setting (bits 12:10 are cleared). 

If any of these criteria are not met, the RNG should not be used and, if possible, 

an error message should be presented to the user.  The MSR should be inspected 

on each XSTORE call, as it is possible that another application may have changed 

the MSR settings.  For the same reason, XSTORE should generally not be 

executed with the REP prefix, as MSR changes during a context switch may not 

be noted. 

(4) If bits 4:0 of register EAX=0 (no bytes read), return to step 2 unless the request 

has timed out.  If bits 4:0 of register EAX=8, then proceed.  If EAX is a value 

other than 0 or 8, an error message should be presented to the user and the RNG 

should no longer be used by the application. 

At the successful completion of this process, the 8 bytes of RNG output (stored from the 

initial value of ES:EDI) are available for contribution to the application entropy pool.  

                                                 

14 In general, to avoid buffer overflow problems, the XSTORE return buffer should always contain at least 
8 allocated bytes (regardless of EDX setting). 
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For systems that perform entropy estimates, the application may assume that the 8-bytes 

of output contain 48 bits of entropy.15 

5.4.4. Maintaining an Entropy Pool 

Output from the Nehemiah RNG should normally be used to seed an entropy pool.  The 

output can be used to directly seed an entropy pool as performed by the UNIX 

/dev/random driver.16  The output may also be used to seed an intermediate entropy pool 

that is periodically hashed and contributed to a primary entropy pool, as in the Yarrow 

PRNG.17  While relative abundance of high quality output provided by the Nehemiah 

RNG can ease design concerns, developers should always avoid re-designing security 

code if a free and well-reviewed design already exists.  At a minimum, a single secure 

application may use a cryptographically strong “whitening” function to mix RNG outputs 

together.  A suitable example would be the SHA-based random-number generator 

described in FIPS 186-2.18   

The following are usage recommendations are provided: 

• The developer should define a value for entropy_min, or the minimally acceptable 

level of entropy.  For security applications, entropy_min should be at least 128 

bits.  As a security bound, no more than 2entropy_min /2 bits (e.g., 264 bits) should be 

extracted from the PRNG before it has been completely reseeded.  (This is not 

generally a practical concern, as entropy_min should be large enough that it is 

infeasible to obtain 2entropy_min /2 output bits.)  

• The PRNG should have an entropy pool at least twice the size of the level of 

security desired.  For security applications, the PRNG should have a pool of 128 

bits at an absolute minimum, and a pool of at least 256 bits is strongly 

recommended.   

                                                 

15 This is consistent with an entropy estimate of 0.75 bits per whitened output bit.  Sensitive applications 
can further derate this entropy estimate with minimal penalty. 
16 The Linux programmers manual for /dev/random can be found at http://www.rt.com/man/random4.html. 
17 Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic Pseudorandom Number 
Generator, by J. Kelsey, B. Schneier, and N. Ferguson, http://www.counterpane.com/yarrow.html. 
18 Appendix 3.1 of FIPS 186-2, http://csrc.nist.gov/publications/fips. 
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• On initialization, the Nehemiah RNG should contribute four times19 the 

minimally acceptable level of entropy to the entropy pool.  For example, if a 

minimum entropy level of 256 bits is required, 22 XSTORE calls should be 

performed.20  The initialization code should also verify that the RNG does not 

output all “0” or all “1” bits.  The complete initialization process should finish in 

under 0.5ms. 

• Because the XSTORE command returns quickly if no data is present in the FIFO, 

time-sensitive resources (such as /dev/random) may call XSTORE multiple times 

before adding the contents of the return buffer to the pool (4 consecutive calls to 

XSTORE generally exhausts the FIFO). 

5.5. Random Numbers for Non-Secure Applications 

Although post-processing is recommended for all hardware-based entropy sources, some 

developers of non-secure applications may elect to use the Nehemiah RNG without 

hashing or mixing.  Such developers applications should consider the following 

procedures: 

• Boot-time initialization.  At system boot, the RNG should be initialized as 

recommended above. 

• Application initialization.  At application start, the presence of the RNG should be 

verified as recommended above, with the exception that calls to extract random data 

from the RNG should use the procedures below. 

• Extracting random data.  The XSTORE command should be setup and called as 

recommended above, except that: 

o When preparing for the XSTORE call, the two lowest bits of EDX should be 

set (EDX=0x00000003).  This discards FIFO data (7 of every 8 bits are 

discarded) to increase the temporal distance between adjacent bits. 

                                                 

19 The suggestion of a 4X safety factor does not reflect a specific concern about the RNG design.  Instead, 
the high performance of the Nehemiah makes it practical to add a sizable safety margin for critical 
operations.   
20 256 bits entropy * 4X safety factor / 0.75 bits entropy per output bit / 64 bits per XSTORE call = 21.33 
XSTORE calls. 
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o XSTORE returns 0 or 1 byte of data (instead of 0 or 8 bytes). 

o If the MSR register (as copied to register EAX) does not match the criteria 

listed in Section 5.4.3, it may still be possible to use the data byte.  (This 

would be an application-specific decision). 

o Although the data should be of sufficient quality to pass most randomness 

tests, the application should not be provided with a formal entropy estimate. 

6. Closing Commentary 

The Nehemiah random number generator meets the overall design objective of providing 

applications with a high-performance, easy-to-use random number generator.  

Entropy.  Cryptography Research tested multiple processors in a range of environmental 

conditions, oscillator stop/start usage patterns, and conditions found in multi-application 

environments.  In tests of the raw source (with the whitener disabled), Cryptography 

Research obtained entropy estimates of 0.78 to 0.99 bits of entropy per raw output bit.  

Operation with the whitener enabled is believed to provide 0.99 bits (typical) of entropy 

per output bit.  We recommend that applications requiring high quality randomness use 

the RNG as a source of random seed data for a cryptographically strong PRNG or mixing 

function.  When seeding, applications should assume that the RNG provides 0.75 bits of 

entropy (or less) per output bit, although even more conservative values should be used if 

there is no significant performance impact. 

High output rates.  The RNG generates output at significantly higher rates than most PC-

based randomness resources.  Raw bits are produced at rates of 30 to 50 Mbits/sec, and 

whitened bits were observed at rates of 4 to 9 Mbits/sec.  We estimate that PRNGs 

seeded with the Nehemiah RNG can sustain output in excess of 2 Mbits of entropy per 

second, which should eliminate blocked PRNG reads in virtually all applications.  Even 

more important, the high bit rates enable sensitive applications to use more conservative 

per-bit estimates of entropy with little performance penalty. 
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On-die location.  Unlike all PC-based random number sources known to the authors, the 

Nehemiah RNG is located entirely on the microprocessor die.  This location provides 

applications with convenient and well-controlled access to the RNG.  It is also the most 

logical location to place a system security component.  Although the Nehemiah processor 

is not designed to serve as a platform for tamper-resistant applications, this location also 

increases the effort required to physically tamper with the RNG subsystem. 

Multi-application support.  The RNG is well designed to support simultaneous use by 

multiple applications.  Only OS-level (ring 0) code is provided with write access to the 

RNG configuration register.  Because XSTORE copies the MSR settings to user space, 

applications may validate the RNG configuration on each XSTORE call.  RNG data is 

only output once, and altering any MSR settings flushes any unread RNG data.  Future 

hardware versions can further improve application separation by discarding more bytes 

(and therefore increasing temporal distance) between filling the 8-byte FIFO buffers. 

Excellent visibility of raw source.  The ability to disable the RNG whitener and adjust the 

EDX divider enables a wide set of tests to be meaningfully applied.  The designers should 

be commended for including raw source access and 1:1 divider access, enabling 

application developers to perform source validation and improve their levels of source 

assurance.  These features will enable a significantly larger population of developers and 

researchers to study the RNG source. 

User options.  The provisioning of many user settings (bias, string filter, EDX divider, 

and whitener settings) is a double-edged sword.  Some features, such as bias adjustment 

and string filtering, are beneficial for testing and for advanced developers of embedded 

systems with unusual requirements, but could cause problems if used in multi-application 

systems.  The Nehemiah balances these challenges by limiting configuration changes to 

ring 0 code while allowing all applications to verify that the device is properly 

configured. 

Manufacturing test.  Documentation states that Nehemiah parts failing RNG 

manufacturing tests will have the RNG permanently disabled.  While application 

software can detect a disabled RNG, the presence of Nehemiah parts without an RNG 
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capability may contribute to end-user confusion.  (This manufacturing choice provides 

VIA with the assurance that the RNG feature will not reduce the manufacturing yield. As 

VIA gains experience manufacturing RNG-enabled parts, procedures for handling parts 

that fail manufacturing tests may change.) 

Our analysis indicates that the Nehemiah core Random Number Generator is a suitable 

source of entropy for use in cryptographic applications.  The RNG can be easily 

incorporated within existing software applications and operating systems and functions 

well within a multi-application environment.  The device meets the overall design 

objective of providing applications with a high-performance, high-quality, and easy-to-

use random number generator.  


