
Insert presenter logo

here on slide master.

See hidden slide 2 for

directions

Session ID: HT1-402

Session Classification: Intermediate

Benjamin Jun

Cryptography Research, Inc.

Defending
Consumer Electronics

Defending Consumer Electronics

2

Security challenges

Learning from open source

Attacks!

Putting it together: Boot protection

Consumer electronics threats

� Content piracy
� Unauthorized content access

� Financial fraud
� Extract, use payment key(s)

� Modified functionality
� Enable unauthorized features, linux

� Device cloning
� Sell interoperable device

Pay TV security card emulator Key redistribution

Consumer electronics threats

� Content piracy
� Unauthorized content access

� Financial fraud
� Extract, use payment key(s)

� Modified functionality
� Enable unauthorized features, linux

� Device cloning
� Sell interoperable device

“$999.99”

ATM skimming device

Consumer electronics threats

� Content piracy
� Unauthorized content access

� Financial fraud
� Extract, use payment key(s)

� Modified functionality
� Feature unlock, jailbreak, linux

� Device cloning
� Sell interoperable device

Agilent 54833D Oscilloscope

Consumer electronics threats

� Content piracy
� Unauthorized content access

� Financial fraud
� Extract, use payment key(s)

� Modified functionality
� Enable unauthorized features, linux

� Device cloning
� Sell interoperable device

Unauthorized toner chip

“RAZR V3” Battery

Consumer electronics threats

� Content piracy
� Unauthorized content access

� Financial fraud
� Extract, use payment key(s)

� Modified functionality
� Enable unauthorized features, linux

� Device cloning
� Sell interoperable device

Mobile first,

PCs to follow

8

Try this at home!

Learn from open-source embedded products

Look to open-source embedded projects

� Not (really) a security compromise…
� Learn techniques to control and use HW
� Efforts involve reverse engineering

� Good engineering lessons
� Fast way to explore embedded environments
� Fun! Good return on $ / time

Microsoft; mindupdate; Make magazine

Linksys WRT54GL

� $60 home wireless router
� Linksys released open source SW

� Why mod?
� Modify parameters (xmit power, etc.)

� Add more firewall setttings, mesh
networking, QoS, metering, etc.

� Linux on cheap, low power platform

� Thriving hobbyist community
� DD-WRT (www.dd-wrt.com)

� OpenWRT (www.openwrt.org)

� Note: buy the WRT54GL

Linksys (Cisco Systems)
The Consolidated Hacking Guide For The Linksys

WRT54GL, “ByteEnable”, www.linuxelectrons.com

FW reflash of Linksys WRT54GL

� Upgrade to OpenWRT firmware
� Download OpenWRT whiterussian rc5,

squash fs
http://downloads.openwrt.org/whiterussian/rc5/bin/openwrt-wrt54g-squashfs.bin

� Use (unsecured) FW update mechanism

� Reboot, use www interface to set root pw

� SSH in!

OpenWRT FW: whiterussian rc5, squash FS

ASCII: “W54G” Version 4.30.12Build date: 2007 Dec 14

ASCII: “HDR0”

Offset to start of kernel from .TRX header

32-bit CRC

Stock Linksys FW: “4.30.12 1/10/2008”

Example: Microsoft Kinect

Example: Linksys NSLU2

� Ethernet SMB (Windows) fileserver for USB
disks ($70)

� HW mods:
� Overclocking

� RAM upgrade

� Add debug ports

� Add wifi

http://www.nslu2-linux.org/wiki/HowTo/AddAThirtyFourPinUniversalConnector http://www.nslu2-linux.org/wiki/HowTo/OverClockTheSlug David Hicks, http://www.nslu2-linux.org/wiki/HowTo/AddInternalWireless

No surprise to embedded developers…

� Nearly all products based on commodity cores,
reference designs
� WRT54GL: Broadcom BCM5352E

� NSLU2: Intel IXP420 XScale (ARM)

� Small number of development environments
� Linux, uC Linux, VxWorks

� Good development, cross-compilation, debugging tools

� Hardware incrementally “free”
� Differentiating features governed by software

� Software modifications have interesting results!

Why follow these projects?

� Infrastructure type projects
� “Boot linux on ____”, “repurpose ____”
� Understand debugging, porting tools

� Patch type projects
� “Get in, get system to do ____, get out.”
� SW reverse engineering

� Hardware extension projects
� “Add ___ HW feature”
� HW reverse engineering

16

Extracting Information

Extracting information

� Goal: Gather information
� Reverse engineering is about making hypotheses
� … and finding ways to confirm them !

Passive

methods

Active

methods

Bus I/O

� Observe protocol
� Protocol elements
� Error handling
� Crypto?

� Replay messages
� Understand stateful protocol elements
� Create test harness

� Perturb messages
� Alter data fields, message order

SCSI Analyzer

USB Analyzer

Information leakage

Integrated circuits consume power
as they operate.

Typical MOS Transistor
Mangard, Oswald, Popp

www.dpabook.org

Simple Power Analysis (SPA)

Differential Power Analysis (DPA)

� To read more about DPA
� www.cryptography.com/dpa
� www.dpabook.org

Correct guess g for Kj

Incorrect guess g for Kj

Mean of all traces

Defenses against power analysis

� Categories

� Certifications / Requirements
� Common Criteria

� CAC, E-Passport, HSPD-12

� FIPS 140-3 draft

Cryptography Research

� Obfuscation

� Leak Reduction

� Balanced HW / SW

� Amplitude & Temporal Noise

� Incorporating Randomness

� Protocol Level CM

Use of these countermeasures requires a license from Cryptography Research and is protected under US patents 6,278,783, 6,298,442,
6,304,658, 6,327,661, 6,510,518, 6,539,092, 6,654,884 and other patents issued and pending in the US and worldwide.

Code dump

� Using the SoC
� Ask SW to read it for you!

� Use JTAG debug interface

� Physical tap
� I/O bus or external reader

� With a code dump…
� Recognize processor type

� Disassemble, probe for
implementation weakness

� Search for keys (high entropy)

GALEP-4 programmer/reader

USB – JTAG connector

Die imaging
� Imaging the ROM

� Optical microscope / FIB:
automated imaging of ROM

� Imaging digital logic
� Use automated tool to image +

recover netlist
� Easier if crypto area small, design

has good structure
� One reference: Nohl, Starbug, Plotz,

Mifare Security, CCC 2007

� Comment: Imaging techniques have
some errors
� Requires human interpretation +

correction
� ...AES with a few errors is obviously AES

Memory image: Hector Vega

FIB: University of Cambridge Department of Materials Science Device Materials Group

Imaging countermeasures

� Hide stuff
� Shield layers

� Camouflage cells

� Add an entropic array
� “Grown” from design rules and random seed

� Internal entropy / lack of structure

� Makes imperfect reverse engineering
results useless

US patent 6,640,305

Example EA

26

Active Attacks

Active attacks

� “Standard” attacks and defenses apply…
� Protocol / network attacks
� Filesystem attacks
� OS attacks

� Plus, attacker has direct physical access!

Debug tools

� JTAG analyzer
� Full debug interface
� Boot code replacement
� In-target flash/ROM reading + programming

EJTAG In-target analyzer
First Silicon Solutions, ISA-MIPS

ARM JTAG debugger interface
Olimex Ltd., ARM-USB-OCD

Glitching tools

Riscure VC Glitcher

� What if computing platform is not reliable?

Hand tuned analog glitcher

Thermal attack Arbitrary waveform generator

Glitching example

; This routine is used to output a 4-byte result

; DPTR points to first byte of data

result_out: MOV R0, 3 ; set loop counter

result_loop: CALL #putch ; call UART routine

INC DPTR ; increment pointer

DJNZ R0, #result_loop ; conditional loop

RET

Fault induction

Glitch impulse & power trace during
successfully-glitched RSA CRT

Cryptography Research, Inc.

� What things can happen?
� Induce a computational fault

� Change value being read/stored

� Break into/out of an execution loop

� Change program counter

� Apply externally or to specific circuit
element on chip (laser)

� Surprises
� More repeatable than you think…

32

Boot Attacks

Bootloaders

� Bootstrap embedded system
� Initialize environment and

peripherals
� Decrypt / decompress flash
� Authenticate code

“Let's start at the very beginning

A very good place to start

When you read you begin with A-B-C

When you sing you begin with do-re-mi”

– Maria

Example: Bootloader with code signatures

� Boot ROM with code authentication

� Reset vector jumps to boot ROM

� Verify RSA cert (hash of PK can be hard-coded)

� Hash and verify payload, FAIL on error

� Decrypt + decompress payload to RAM

� Clear all other RAM

� Jump to payload

� HW requirements

� Force jump to internal boot ROM on reset

� JTAG and other execution vectors off by default

� Development/test: skip bootloader if fuse unblown

Bootloaders are hard!

� Challenges
� “Instant on” requirements
� Crypto bootstrap
� Low power mode
� Developer access
� Recovering from corrupted image
� MMU behavior
� Key management
� Support for different HW versions
� Secure fuse reads
� Forward compatibility
� … and many more …

Checkpoint Charlie (1986)

Ways to load code

� Grab control of program counter with buffer overflow,
glitch, protocol errors, …

� Suspend/resume with memory image change

� Replace device public key
� “Savegame” buffer overflow in “007” Xbox game (2003)
� Makes public modulus divisible by 3

� Recover private key and sign your own code
� PS3 DSA signature attack, CCC 2010

http://xbox-linux.sourceforge.net/docs/007analysis.html

37

Conclusions

Consumer electronics challenges

� Devices:
� Are in physical possession by attacker

� Have flat memory architectures

� Are used offline

� Developer tools == attacker tools

� High threat systems require
security support in HW & SW

Play with an open-source embedded project!

� Get a feel for HW and SW at block level

� Learn a few nuts and bolts

� Understand developer / attacker tools

� Have fun!

Images: Microsoft; mindupdate; Make magazine

Contact Information
For more information, or to discuss how Cryptography
Research can help with a security problem:

© 1998-2011 Cryptography Research, Inc. (CRI) Portions may be protected under issued and/or pending US and/or international patents. A separate license from CRI is
required for the CryptoFirewall™, DPA Countermeasures, and Self-Protecting Digital Content™. All trademarks are the property of their respective owners. The
information contained in this presentation is provided for illustrative purposes only, and is provided without any guarantee or warranty whatsoever, and does not
necessarily represent official opinions of CRI or its partners.

Benjamin Jun
ben@cryptography.com
415.397.0123

www.cryptography.com

