
DRAM Core Model

© 2010 Rambus Inc. 1 of 24

User Manual DRAM Core Model
Thomas Vogelsang

tvogelsang@rambus.com

1. Copyright and Disclaimer
Copyright © 2010 Rambus Inc. All Rights Reserved.

The information contained in this document reflects Rambus Inc.‟s current view of the

subject matter discussed herein as of the date of publication. Rambus Inc. is subject to

changes in market conditions and the demand for products and services and, therefore,

this document shall not be construed as a commitment by Rambus Inc.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, OR NONINFRINGEMENT, WHICH WARRANTIES ARE

EXPRESSLY DISCLAIMED. THIS DOCUMENT MAY INCLUDE TECHNICAL

INACCURACIES OR TYPOGRAPHICAL ERRORS. RAMBUS INC. RESERVES

THE RIGHT TO MAKE CHANGES TO THIS DOCUMENTATION WITHOUT

OBLIGATION TO NOTIFY ANY PERSON OR ORGANIZATION. SUCH

CHANGES MAY, AT RAMBUS INC.‟S DISCRETION, BE INCORPORATED IN

NEW EDITIONS OF THE DOCUMENT. RAMBUS INC. MAY MAKE

IMPROVEMENTS AND/OR CHANGES TO THE TECHNOLOGY DESCRIBED IN

THIS DOCUMENT AT ANY TIME.

Rambus Inc. may have patents, patent applications, trademarks, copyrights, or other intel-

lectual property rights covering the contents of this document, and Rambus Inc. and its

licensors retain all right, title, and interest in and to such intellectual property rights. Ex-

cept as expressly provided in a written agreement between you and Rambus Inc., the fur-

nishing of this document does not grant you any license, express or implied, to any such

patents, patent applications, trademarks, copyrights, or other intellectual property of

Rambus Inc.

“XDR™” and “Rambus” are trademarks or registered trademarks of Rambus Inc. pro-

tected by the laws of the United States or other countries. This document may contain

some references to trademarks owned by entities other than Rambus Inc., and such

trademarks are the property of their respective owners.

For additional information, please contact:

Rambus Inc.

1050 Enterprise Way, Suite 700

Sunnyvale, CA 94089

408-462-8000

mailto:tvogelsang@rambus.com

DRAM Core Model

© 2010 Rambus Inc. 2 of 24

2. Overview
The DRAM Core Model tool has been written to allow the assessment of a wide variety

of DRAM architectures with respect to power consumption. To give maximum flexibility

the program was written in Perl working from a description language specified to allow

full description of DRAM architectures.

For a discussion of the model background and a selection of results achieved with the

model see [1].

3. Program Usage

3.1. Contents of the Program Package

The program package contains in addition to this documentation and the reference [1] the

program code (Perl code for UNIX), a sample input file and output files created using the

sample input file.

3.2. Running the Program

The program is started with the UNIX line command <path>dram_model.pl <-v> <-

d<zero|one>> <name>. The flag –v creates verbose output. The flags –dzero respective-

ly –done force the loop dimension (see the programming of loops below). The input file

<name>.dram is required to describe the DRAM to be evaluated. The description lan-

guage is given below.

The program consists of the main program and a number of packages. The packages need

to be stored in a subdirectory perlsubs under the directory where the main program is

located. This directory needs to be defined in the main program‟s „use lib‟ statement.

Check if it corresponds to the correct location if the program aborts not finding its sub-

routines.

3.3. Important Usage Considerations

The DRAM core model can be only as accurate as its input files. The description of a typ-

ical 55nm DDR3 commodity DRAM is provided with the model. Extrapolating the mod-

el to technologies other than 55nm should take into account the technology roadmap dis-

cussion in [1]. As outlined there the ITRS roadmap is an important input. Any major

modification of the input file should be followed by a sensitivity analysis. In such a sensi-

tivity analysis parameters are varied by a certain amount, e.g. ±20% and then a Pareto is

generated showing which parameters have the largest influence on the results of the mod-

el. The user must make sure that the values of the parameters having the largest influence

are well understood. Miscellaneous logic circuitry is most difficult here. It can‟t be ex-

pected to be modeled absolutely correct without having access to an actual DRAM prod-

uct design. This is also the area where there are the largest variations between DRAMs of

the same type and generation but different vendors. The description of miscellaneous log-

ic circuitry in the input file can be used as fitting parameter in a comparison with existing

DRAMs. When evaluating completely novel architectures the most important goal is to

come up with some reasonable assumptions (e.g. a certain number of gates per bit of in-

ternal data width) and then use these assumptions consistently over all the architectures

DRAM Core Model

© 2010 Rambus Inc. 3 of 24

being compared. In that way even if absolute accuracy is less good, the relative accuracy

of the comparison will still be high.

3.4. Description Language

3.4.1. General

The DRAM is described in the form

[<Section>

[<Key> <Subkey>=<Value>]]

<Section>, <Key> and <Subkey> are defined words. <Value> can either also be a de-

fined word or a number depending on the situation it is used in.

All lines or partial lines after # are ignored. Empty lines are ignored. Spaces are treated as

word separators.

A backslash „\‟ signifies that the next line is a continuation of the current line. This can be

used for very long values, especially lists in the „GlobalLoop‟ section. The backslash has

to be before a comment, not after a comment at the line end, to be recognized.

3.4.2. Acronyms

SA Primary or bitline sense-amplifier

SSA Secondary or array data line sense-amplifier

BL bitline

WL wordline

MWL Master wordline

SWL Sub or local wordline

HV High voltage

nch N-channel MOSFET

pch P-channel MOSFET

DRAM Core Model

© 2010 Rambus Inc. 4 of 24

3.4.3. Language Definition

All words defined here are evaluated without regarding upper or lower case letters. Upper and lower case can be used to make words

more easily readable.

Section Key Subkey Unit Comment

Technology Oxide_Main t Ả Oxide thickness of standard periphery and low vol-

tage transistors

 C fF/ m
2 Oxide capacitance of standard periphery and low vol-

tage transistors

 Oxide_HV t Ả Oxide thickness of high voltage transistors

 C fF/ m
2
 Oxide capacitance of high voltage transistors

 Oxide_Array t Ả Oxide thickness of cell access transistor

 C fF/ m
2
 Oxide capacitance of cell access transistor

 Transistor_Main Lmin m Minimum channel length of standard periphery and

low voltage transistor

 Csd fF/ m Source-drain capacitance of standard periphery and

low voltage transistor

 Transistor_HV Lmin m Minimum channel length of high voltage transistor

 Csd fF/ m Source-drain capacitance of high voltage transistor

 Transistor_Array L m Channel length of array access transistor

 W m Channel width of array access transistor

 Array Cbl fF Bitline capacitance including SA wiring but without

devices, requires setting of SA device sizes

 Cshare_BL_SWL % Share of capacitance BL to SWL

 Cs fF Cell capacitance

 MWLwire fF/um MWL specific wire capacitance

 MWLpredecode Number of pre-decoded signals in MWL decoder.

Number of MWL nch is logarithm base 2 of that

number

 MWLdecNchW m Device width MWL nch

 MWLdecNchL m Device length MWL nch

 WLctrlLoadNchW m Device width nch load of wlctrl in SA hole

 WLctrlLoadPchW m Device width pch load of wlctrl in SA hole

DRAM Core Model

© 2010 Rambus Inc. 5 of 24

Section Key Subkey Unit Comment

 SWLdrvNchW m Device width nch at master wordline

 SWLdrvPchW m Device width pch at master wordline

 SWLrstNchW m Device width SWL restore nch

 SAnchW m Device width SA nch

 SAnchL m Device length SA nch

 SApchW m Device width SA pch

 SApchL m Device length SA pch

 SAeqlW m Device width SA equalize

 SAeqlL m Device length SA equalize

 SAshrW m Device width SA BL share (only folded BL)

 SAshrL m Device length SA BL share (only folded BL)

 SAbswW m Device width SA bit switch

 SAbswL m Device length SA bit switch

 BEOL CperiWire pF/mm Wire capacitance of periphery signal wiring

BasicElectrical Voltages Vcc V External supply voltage

 Vperi V Standard periphery voltage

 Varray V Array voltage

 Vpp V Wordline voltage

 Efficiency Vperi % Current multiplier external supply to internal current

standard periphery voltage

 Varray % Current multiplier external supply to internal current

array voltage

 Vpp % Current multiplier external supply to internal current

wordline voltage

FloorplanPhysical Vertical Blocks [[A|P]<n>]] Description of block arrangement in horizontal direc-

tion. A is array block, P is periphery block. At the

moment only one array block is supported.

 Horizontal Blocks [[A|P]<n>]] Description of block arrangement in horizontal direc-

tion. A is array block, P is periphery block. Only one

type of array block, A1, is supported.

 SizeVertical [A|P]<n> m Vertical size of block [A|P]<n>

 SizeHorizontal [A|P]<n> m Vertical size of block [A|P]<n>

 CellArray BL [h|v] Direction of bitline

 BitsPerBL Bits per bitline

DRAM Core Model

© 2010 Rambus Inc. 6 of 24

Section Key Subkey Unit Comment

 CellsPerSWL Bits per sub (local) wordline

 BLtype [open|folded] folded bitlines (used with 8f
2
 cells) have twice as

many local wordlines as bits per BL, open bitlines

(used with 6f
2
 and 4f

2
 cells) have cross point cells but

need a dummy array at the edge

 CslBlocks Number of array blocks across which one physical

CSL extends

 ECCFactor This factor multiplies the multiplies the internal page

size to show the impact of ECC on the array and

sense-amplifier. Additional power due to circuitry

overhead needs to be implemented as a logic block.

ECCFactor does not need to be specified and defaults

to 1.

 BLpitch nm Pitch of bitlines; Optional input,, used to calculate

array block size bottom up and compare with size

given in SizeVertical and SizeHorizontal

 WLpitch nm Pitch of wordlines; Optional input,, used to calculate

array block size bottom up and compare with size

given in SizeVertical and SizeHorizontal

 SenseampWidth um Width of sense-amplifier; Optional input,, used to

calculate array block size bottom up and compare

with size given in SizeVertical and SizeHorizontal

 SWLdriverWidth um Width of SWL driver stripe; Optional input,, used to

calculate array block size bottom up and compare

with size given in SizeVertical and SizeHorizontal

 RowRedundancy % Amount of row redundancy; Optional input,, used to

calculate array block size bottom up and compare

with size given in SizeVertical and SizeHorizontal

 ColumnRedundancy % Amount of column redundancy; Optional input,, used

to calculate array block size bottom up and compare

with size given in SizeVertical and SizeHorizontal

 ArchitectureFactor This factor does not change the calculation results. It

can be used to snap the physical size to a desired as-

pect ratio in case this cannot be done by changing the

starting values of the vertical and horizontal array

block sizes.

DRAM Core Model

© 2010 Rambus Inc. 7 of 24

Section Key Subkey Unit Comment

FloorplanSignaling <DataR|

DataW|

ColAdd|

RowAdd|

BankAdd|

Control|

Clock><n>

Direction [h|v] The key defines the type of the signal segment: data

used for read, write, column, row or bank address,

control and clock. Each signal segment is numbered.

The numbering of each path needs to be consecutive.

 Start <m>_<n> <m>_<n>are the coordinates of the block from the

physical description where the signal segment starts

(based on block numbering beginning with 0). Start /

End combinations go from one block to another (cen-

ter to center).

 End <m>_<n> <m>_<n>are the coordinates of the block from the

physical description where the signal segment starts

(based on block numbering beginning with 0). Start /

End combinations go from one block to another (cen-

ter to center).

 Inside <m>_<n> <m>_<n>are the coordinates of the block from the

physical description where the signal segment is lo-

cated if it does not extend to another block. Use in

combination with Fraction

 Fraction % Fraction is the percentage of the extension of the

block with a signal segment inside which is used as

segment length. Use in combination with Inside.

 NchW m Device width of nch load at start

 PchW m Device width of pch load at start

 Load fF Device load at start

 Mux <m>:<n> Serialize or deserialize ratio at start

 Swing <Full|Half|<x>V> Signal swing on segment (full, mid level or specified

voltage), defaults to full at Vperi.

 P_Eff % Power efficiency: the external power at Vcc is calcu-

lated as Vcc*Current/P_Eff. Default is 100% if not

defined.

 Toggle % Toggle rate as fraction of maximum data rate

 CoreBoundary Read Last segment of read data path considered to be in

DRAM Core Model

© 2010 Rambus Inc. 8 of 24

Section Key Subkey Unit Comment

core for current output

 Write First segment of write data path considered to be in

core for current output

Periphery Logic<n> Toggle % Toggle rate as fraction of base frequency (see compo-

nent)

 Gates Number of logic gates

 NchW um Typical nch width in gate

 PchW um Typical pch width of gates

 DevicesPerGate Number of transistors per gate

 AreaFactor % Percentage of transistor gate area of total block area

used to calculate block size

 Operation <all|activate|read|

write|precharge|

readwrite|row>

Operation in which current is generated

 Component <row|column|data|

control|clock>

Part of DRAM circuitry in which current is generated.

Row and column will be counted under „core‟ in the

power usage summary, the rest under „periphery‟.

row, column and control base frequency is the control

frequency, clock and data base frequency is the data

clock frequency.

 Swing V To be set if voltage is different from Vperi

 P_Eff % Power efficiency: the external power at Vcc is calcu-

lated as Vcc*Current/P_Eff. Default is 100% if not

defined.

 Sink<n> Vcc mA Constant current sink on Vcc

 Vperi mA Constant current sink on Vperi

 Varray mA Constant current sink on Varray

 Vpp mA Constant current sink on Vpp

Specification IO Width Number of I/O bits

 DataRate Gb/s/pin Data rate

 Type <single|

differential>

Type of I/O (single ended or differential) – not yet

implemented as difference in results

 Burstlength Allows specification of a burst length different from

the default which is a burst of the full data granularity

 Control BankAdd Number of bank address bits

DRAM Core Model

© 2010 Rambus Inc. 9 of 24

Section Key Subkey Unit Comment

 RowAdd Number of row address bits

 ColAdd Number of column address bits

 Miscellaneous Number of additional miscellaneous bits

 Banks Number of banks (alternative to bankadd)

 Rows Number of rows (alternative to rowadd)

 Columns Number of columns (alternative to coladd)

 Frequency MHz Frequency of control bus – this is the frequency used

for the pattern and control signals

 Dataclock Number Number of data clocks

 Frequency MHz Data clock frequency

 Pattern Loop string of act, pre,

rd, wrt, nop

Calculates percentage spent in each operation. Row-

cycle is calculated from pattern. IMPORTANT: the

clock used for the pattern is the control clock

GlobalLoop Loop<n> Section Section of variable which will be used in loop

 Key Key of variable which will be used in loop

 Subkey Subkey of variable which will be used in loop

 Value linear <start>

<end> <step> or

logarithmic <start>

<end> <multip-

lier> or list <list

values separated

by comma>

Value of variable which will be used in loop

 Type Dimension <one|multi|zero> Type of loop: one-dimensional requires that the value-

entries of all Loop<n> statements are lists and that all

lists have the same number of entries. Each calcula-

tion then varies the combination of all Loop<n>

statements at the same list index. Multi-dimensional

loops vary all possible combinations of Loop<n>

changes. Default if omitted is multi. Zero bypasses

the loop by evaluating only the first setting. This is

useful for debug and when creating the floorplan

drawing.

DRAM Core Model

© 2010 Rambus Inc. 10 of 24

3.5. Wiring Topology Definition

The description of the wiring follows the topology shown below. Each bus is split into

segments which have a buffer / multiplexer at the end which can provide a load and can

also change the width and frequency of the bus. If the parameter mux is e.g. 2:1, between

segment 0 and segment 1 then the width w0 = 2 w1 and the frequency f0 = ½ f1. Adding a

buffer / multiplexer to the last segment has no meaning as there is no wiring after it. The

width and frequency of each segment is calculated from the external pin information giv-

en in the specification section. It is therefore calculated backward for the read data path

and forward for all other signal paths.

3.6. Presentation of Results

3.6.1. Physical and Signaling Floorplan

Follow these steps to create a PowerPoint Slide showing the architecture and signal path

layout

 Open <name>_physical.txt in Excel.

 Select the range of x and y coordinates.

 Insert a chart, type xy-scatter sub-type lines with no data points; deselect all op-

tions like axes, grid lines, legend etc.

 Insert on new sheet.

 Format plot area and set both border and area to none.

 Select data series and set color to black.

 Save in Excel workbook format.

 Open <name>_signals.txt and move worksheet to workbook with physical draw-

ing.

 Create a line below the data provided by Perl, enter 0 for each column and add

this line to each value of the Perl values. The purpose is to provide an offset

which can be used to separate visually different signals which would otherwise

overlay and hide each other.

 Copy all signals with applied offset to the drawing using „Paste Special‟ and se-

lecting „New Series, x-axis in first column‟.

 Change colors and line styles as desired, use offsets to move apart.

 Copy the drawing and paste special into PowerPoint as enhanced metafile.

 Ungroup by first confirming to ungroup it even when it is a picture and the un-

group again.

w0 w1 w1 wn

external bus for dataw,

coladd, rowadd, bankadd,

control, clock

external bus for datar

buf,muxbuf,mux buf,mux

DRAM Core Model

© 2010 Rambus Inc. 11 of 24

 Delete the background so that only the lines are left and regroup.

 Resize to represent the correct aspect ratio in two steps: first format the size of the

object by setting height and width to the y and x dimension of the die without

locking the aspect ratio, then lock the aspect ratio and resize again to have the de-

sired size to fit the presentation.

3.6.2. Power Results

All power results are written to tab-separated files readable with Excel. If there is no

GlobalLoop section in the input file, then there will be only one file created named

<name>_power.txt. This file contains separate entries for all contributors to power listed

separately to create an overall power usage Pareto as well as grouped results which can

be used to create pie-charts. When there is a GlobalLoop section each data point will

have a separate consecutively numbered file of this kind. The not numbered power file is

then a summary file which has one entry line for each data point to allow the plotting of

sensitivity charts.

4. Program Details

4.1. Program Structure

The script is built as a series of modules to keep the file sizes manageable and to allow

flexibility in development. The main modules are

 BasicElectrical: subroutines for section

 Current: current calculator

 FloorplanPhysical: subroutines for section

 FloorplanSignaling: subroutines for section

 GlobalLoop: subroutines for section

 Parser: reads input file and converts into internal hash storage

 Periphery: subroutines for section

 Power: power calculator and output routines

 Specification: subroutines for section

 Syntax: syntax checker using subroutines from each section

 Technology: subroutines for section

Further checking of parameters is done during evaluation when the context of a parame-

ter is known. The program is aborted with an error message in case of errors in the input

file.

4.2. Internal data structures

The parsed input data are in all subroutines available in a hash %input which has keys of

the form <section>-<key>-<subkey>. The value of each hash entry is the value of the

specific parameter. This hash is set by parsing the input file and then used for all further

operations.

4.2.1. FloorplanPhysical

The physical Floorplan is described with five variables:

 $bl_dir holds the direction of the bitline (horizontal or vertical)

DRAM Core Model

© 2010 Rambus Inc. 12 of 24

 @blk_coord_h is an array storing all x-coordinates

 @blk_coord_v is an array storing all y-coordinates

 @blk_type_h is an array storing either a or p for the block type (array or peri-

phery) going horizontally across the die

 @blk_type_v is an array storing either a or p for the block type (array or peri-

phery) going vertically across the die

Blocks are defined by the grid built from the horizontal and vertical coordinates. A block

which has array both as horizontal and vertical designator is a true array block, a block

having only one array designator is a periphery block whose size is defined in one direc-

tion by an array block, i.e. an on-pitch block.

See section 4.5.3 for more details on the calculation and input of array block size.

4.2.2. FloorplanSignaling

The signaling allows describing a read data path, writing data path, read-write data path,

column, row and bank address bus, a control bus and the clock. There are therefore 8 va-

riables (@data_r, @data_w, @coladd, @rowadd, @bankadd, @control, @clock). All of

them are arrays of hashes. Each array record describes one segment of the path. The seg-

ments must be continuous. There are two types of segments. The first type goes from one

block to a different one. It is always assumed to go from block center to block center. The

second type is within one block and extends either in horizontal or vertical direction

across a part of the block. For the purpose of connection it is also assumed to have the

connection point in its center. Each segment is described by a hash with the keys „length‟

(always provided as calculated from the geometry description) and „bufstartnchw‟, „bufs-

tartpchw‟, „bufendnchw‟, „bufendpchw‟, „bufstartload‟, „bufendload‟, „bufstartmux‟, „bu-

fendmux‟, „swing‟ and „toggle‟. The latter are provided when they are included in the de-

scription file.

4.2.3. Technology and Specification

Information from the sections on technology and specification is combined to populate a

number of variables which describe the DRAM in more detail and are used to calculate

power consumption. These variables are $prefetch (ratio between bits fetched from core

to width of the IO), $pagesize (number of bits which can be fetched from an open row),

$wl_act_overhead (multiplier for open BL architectures to account for additional edge

arrays), $numberSWLstripes (number of stripes which drive SWLs), $n_subarray_par_bl

(number of array sub-blocks parallel to the BL direction in an array block),

$n_subarray_par_wl (number of sub-blocks parallel to the WL direction in one array

block), $n_subbanks (number of physical subunits in one bank), $opshare_act (share of

activate operations of total pattern length), $opshare_pre (share of precharge operations

of total pattern length), $opshare_rd (share of read operations of total pattern length),

$opshare_wrt (share of write operations of total pattern length), $row_period (repeating

time of activate commands) and $core_frequency (frequency of operation of the DRAM

core).

Use the program with the –v flag and pipe to more to read the output showing interme-

diate calculations when defining a new architecture to make sure that no errors occurred

in the specification.

DRAM Core Model

© 2010 Rambus Inc. 13 of 24

4.3. Calculation of Results

The calculation of results is done in the two packages „Current‟ and „Power‟. All powers

are calculated using the steps capacitance – charge – current and power.

4.3.1. Row current

The row current lumps together all currents contributing to wordline operation. It has two

main operational parts: activate and precharge. The wordline topology used is shown be-

low. This segmented wordline is standard in today‟s DRAMs. There are variations at

some vendors; they do however not change the current significantly.

According to the chart, modeled capacitive loads are the array access transistor gate

oxide, the parasitic wordline-to-bitline capacitance (mostly due to the bitline contact),

master wordline, wlrst, dx, wlctrl and sub-wordline wire capacitances and the device load

of the different drivers of these signals. In addition the row address bus in the periphery is

modeled as described in the signaling floorplan.

The row current is calculated using the row cycle time. At the final current power evalua-

tion when data pattern are used, the row cycle time currents are modified to correspond to

the clock frequency and the number of activate / precharge commands in the pattern. Cur-

rent caused by address change is only counted during activate. All row power is counted

as core power when adding up power contributors by location.

mwl_n

swl

d
x

w
lr
s
t

wlctrl<3:0>

w
lr
s
t<

1
:0

>

d
x
<

1
:0

>

w
lr
s
t<

1
:0

>

d
x
<

1
:0

>

w
lr
s
t<

1
:0

>

d
x
<

1
:0

>

w
lr
s
t<

1
:0

>

d
x
<

1
:0

>

w
lr
s
t<

3
:2

>

d
x
<

3
:2

>

w
lr
s
t<

3
:2

>

d
x
<

3
:2

>

w
lr
s
t<

3
:2

>

d
x
<

3
:2

>

mwl<0>

mwl<1>

mwl<2>

mwl<n-1>

swl<0>

swl<4n-1>

sense-amp stripe

cell array

delay

wlctrl wlrst

dx

dx needs to be delayed due to hot

carrier reliability of SWL driver pfet

wlctrl wlrst

dxdxctrl

option A

option B

Only 4 wires in sense-amp stripe but more devices. If both delay

and level shifter fit then wlctrl can be Vperi signal.

Minimum device count in sense-amp stripe but 8 wires required.

If level shifter fits then wlctrl and dxctrl can be Vperi signals.

DRAM Core Model

© 2010 Rambus Inc. 14 of 24

4.3.2. Sense-amplifier current

Sense-amplifier current is calculated as device current based on all sense-amplifier device

loads and the wire load of the control signals. The device load is different for folded bit-

line architectures used in 8f
2
 and above cell technologies and for open bitline architec-

tures used in 6f
2
 and below cell technologies. The figure below shows the sense-amplifier

structure for both cases.

Sense-amplifier current is mostly drawn during activate when the sense-amplifier is set

from precharge at mid-level to the bitline pair at complement levels and at write when the

bitline pair is flipped into the opposite state. In the program the full bitline capacitance

current is calculated as part of the sense-amplifier current. Sense-amplifier current is

counted as part of the core current when adding up power contributors by location.

4.3.3. Signal current

Signal current is calculated from the device load of the buffers and the wire load of the

signal segments using the periphery wire capacitance value. Data current is assigned to

the core and periphery respectively as defined in the input file, row and column address

current is assigned to the core, all other signal current is assigned to the periphery when

adding up power contributors by location.

4.3.4. Logic blocks

Current due to constant current sinks (e.g. generator bias currents) are added to the peri-

phery current. Current of logic blocks is added to the operation for which it has been de-

varraynset pset_n

csl

ldq_t ldq_cshr0

bl0_t

bl0_c

shr1

bl1_t

bl1_c

eql1

varray/2

eql0

varray/2

varraynset pset_n

csl

ldq_t ldq_c

varray/2

eql

bl_t

bl_c

Folded bitline sense-amplifier

Open bitline sense-amplifier

DRAM Core Model

© 2010 Rambus Inc. 15 of 24

fined. The device load part is calculated using the defined number of logic gates, devices

per gate and device width and length for each logic block. A wire length of each block is

calculated according to the following equations:

area = 3 * gate area / area factor

block length = sqrt (area)

wire length = (block length / transistor length) * wire factor

In this way assumptions about wiring density and device coverage can be parameterized

for an estimate of logic block load.

DRAM Core Model

© 2010 Rambus Inc. 16 of 24

4.4. Sample Input File

This is the input file ddr3_55nm_6f2_2g.dram.

DRAM description for architecture, power and performance model

Device: Reference DDR3 2G 55nm

(c) 2010 Rambus Inc.

Author: Thomas Vogelsang

Section: Description of physical layout

FloorplanPhysical

Arrangement of blocks (starting in lower left corner)

Array information

CellArray BL=v BitsPerBL=512 CellsPerSWL=341 BLtype=open CslBlocks=1

CellArray WLpitch=165nm BLpitch=110nm SenseampWidth=19um SWLdriverWidth=9um

Horizontal blocks = A1 P1 P1 A1 A1 P1 P1 A1

A1: array block

P1: row drivers

Vertical blocks = A1 P1 P2 P1 A1

A1: array block

P1: column driver and core data path

P2: main periphery logic and pads

Block sizes

SizeHorizontal A1=2244um P1=120um

SizeVertical A1=3396um P1=200um P2=530um

Section: Description of signal wiring

FloorplanSignaling

Core boundary in data path

CoreBoundary Read=3 Write=4 # last respectively first segment considered to be in core

Write data path

DataW0 inside=0_2 fraction=5% direction=v mux=1:4 PchW=19.2 NchW=9.6 Toggle=50%

DataW1 inside=0_2 fraction=25% direction=h Toggle=50%

DataW2 start=0_2 end=6_2 mux=1:2 PchW=19.2 NchW=9.6 Toggle=50%

DataW3 start=6_2 end=6_3 Toggle=50%

DataW4 start=6_3 end=7_3 PchW=19.2 NchW=9.6 Toggle=50%

DataW5 start=7_3 end=7_4

DataW6 inside=7_4 fraction=50% direction=v

DRAM Core Model

© 2010 Rambus Inc. 17 of 24

Read data path

DataR0 inside=7_4 fraction=50% direction=v swing=1.0V

DataR1 start=7_4 end=7_3 swing=1.0V PchW=19.2 NchW=9.6

DataR2 start=7_3 end=6_3 Toggle=50%

DataR3 start=6_3 end=6_2 PchW=19.2 NchW=9.6 mux=2:1 Toggle=50%

DataR4 start=6_2 end=0_2 PchW=19.2 NchW=9.6 Toggle=50%

DataR5 inside=0_2 fraction=25% direction=h mux=4:1 Toggle=50%

DataR6 inside=0_2 fraction=5% direction=v Toggle=50%

Row address path

Rowadd0 start=4_2 end=1_2 PchW=19.2 NchW=9.6

Rowadd1 start=1_2 end=1_4 PchW=19.2 NchW=9.6

Rowadd2 inside=1_4 fraction=50% direction=v PchW=19.2 NchW=9.6

Column address path

Coladd0 start=4_2 end=2_2 PchW=19.2 NchW=9.6

Coladd1 start=2_2 end=2_3 PchW=19.2 NchW=9.6

Coladd2 start=2_3 end=3_3

Coladd2 inside=3_3 fraction=50% direction=h

Bank address path

Bankadd0 start=4_2 end=1_2 PchW=19.2 NchW=9.6

Bankadd1 start=1_2 end=1_3

Control path

Control0 inside=7_2 fraction=50% direction=h

Control1 start=7_2 end=0_2 PchW=19.2 NchW=9.6

Control2 inside=0_2 fraction=50% direction=h

Clock path

Clock0 inside=7_2 fraction=50% direction=h

Clock1 start=7_2 end=0_2 PchW=19.2 NchW=9.6

Clock2 inside=0_2 fraction=50% direction=h

Section: Description of specification (data sheet)

--

Specification

IO width=16 datarate=1.6Gbps

Dataclock number=1 frequency=800MHz

Control frequency=800MHz bankadd=3 rowadd=14 coladd=10 miscellaneous=6

Section: Description of technology related parameters

Technology

Oxide_Main t=26A

Oxide_HV t=49A

Oxide_Array t=49A

Transistor_Main Lmin=0.08um csd=0.8fF/um

Transistor_HV Lmin=0.27um csd=0.8fF/um

DRAM Core Model

© 2010 Rambus Inc. 18 of 24

Transistor_Array L=0.085um W=0.055um

Array Cbl=85fF Cs=24fF Cshare_BL_SWL=30% BitsPerCsl=4 # Cell and bitline

Array MWLwireCap=0.3pF/mm MWLpredecode=8 MWLdecNchW=0.65um MWLdecPchW=1.85um MWLdecToggle=50% # MWL

Array WLctrlLoadNchW=3.2um WLctrlLoadPchW=6.4um SWLdrvNchW=1.9um SWLdrvPchW=5.4um SWLrstNchW=1.4um SWLwireCap=0.3pF/mm # SWL

Array SAnchW=1.9um SApchW=1.33um SAnchL=0.16um SApchL=0.16um SAeqlW=0.9um SAeqlL=0.16um SAbswW=1.9um SAbswL=0.08um # sense-amp

Array SAnsetW=0.22um SAnsetL=0.27um SApsetW=0.22um SApsetL=0.27um # SA set devices

BEOL CperiWire=0.25pF/mm

Leakage SD_Main=3nA/um Gate_Main=0.1nA/um2 GIDL_HV_nch=0.6nA/um GIDL_HV_pch=0.005nA/um

Leakage column_width=8.5um MWLdrvNchw=8.5um BLjunction=27fA/cell

Section: Description of basic electrical parameters

BasicElectrical

Voltages Vcc=1.5V Vperi=1.3V Varray=1.2V Vpp=2.9V

Efficiency Vperi=100% Varray=100% Vpp=37%

Section: Peripheral logic

Periphery

Logic0 Gates=200 NchW=3.2um PchW=6.4um DevicesPerGate=4 AreaFactor=10% WireFactor=33% Operation=row Component=control

Logic1 Gates=200 NchW=3.2um PchW=6.4um DevicesPerGate=4 AreaFactor=10% WireFactor=33% Operation=readwrite Component=control

Logic2 Gates=500 NchW=3.2um PchW=6.4um DevicesPerGate=4 AreaFactor=10% WireFactor=33% Operation=readwrite Component=column

Logic3 Gates=600 NchW=3.2um PchW=6.4um DevicesPerGate=3 AreaFactor=10% WireFactor=33% Operation=readwrite Component=data

Logic4 Gates=200 NchW=3.2um PchW=6.4um DevicesPerGate=3 AreaFactor=10% WireFactor=33% Operation=readwrite Component=control

Logic5 Gates=200 NchW=3.2um PchW=6.4um DevicesPerGate=3 AreaFactor=10% WireFactor=33% Operation=all Component=control

Sink0 Vcc=30mA

Section: Description of global loop variables

GlobalLoop

Type Dimension=one

Loop0 Section=Specification Key=Pattern Subkey=loop Value=list \

 act pre nop \

 nop nop nop nop nop, \ # Idd0

 rd nop nop nop, \ # Idd4R

 wrt nop nop nop, \ # Idd4W

 rd act pre nop rd act pre nop rd act pre nop rd act pre nop rd nop nop nop rd nop nop nop rd nop nop nop rd nop nop nop, \# Idd7R

 wrt act pre nop rd act pre nop wrt act pre nop rd act pre nop wrt nop nop nop rd nop nop nop wrt nop nop nop rd nop nop nop # Idd7RW

DRAM Core Model

© 2010 Rambus Inc. 19 of 24

4.5. Sample Output

4.5.1. Zero-Dimension Run

Run with dram_model.pl –dzero ddr3_55nm_6f2_2g

Comments are inserted in green.

Physical floorplan:

die width = 9456um, die height = 7722um

Die size calculated from block size in input file, not from bitline and wordline pitch. See section 4.5.3 for the iterative procedure to

find the correct array block size.

Device Architecture Overview:

Density 2048Mb

8 Banks, 16384 rows, 1024 columns, 16 IOs

Aggregate bandwidth 3.200GB/s

Prefetch 8 bits

Granularity 16 Bytes

Subbanks per bank: 1

Subarrays in array block parallel BL: 32

Subarrays in array block parallel WL: 48

The program calculates a number of generic figures characterizing the DRAM. These figures can be used to check the correctness of

the input file. Wrong numbers of columns or rows or an incorrect physical description will show up here.

Page size from specification: 2.0kB

Sanity check: minimum page size estimated from architecture: 2.0kB

A further sanity check: the page size from the specification should be the same or larger than the minimum page size from architec-

ture.

Number of SWL driver stripes: 49

Row activation overhead (>1 for open bitline): 1.031

Open bitline architectures have a row activation overhead since only half of the cells in the two edge segments can be used, requiring

simultaneous activation of two wordlines if a row address falls into an edge segment. The power program assumes random row ad-

dress usage to calculate an average overhead.

DRAM Core Model

© 2010 Rambus Inc. 20 of 24

Full burst in control clock cycles: 4

Calculated from specification

Row period: 45.0ns

Calculated from data pattern and specification. A pattern without activate and precharge will show here a default value of 60ns which

has no influence on the power. The model uses an effective row period that might be achieved in a real DRAM only by bank interleav-

ing, e.g. a row period of 60ns in a single bank could become an effective row period of 15ns for the DRAM by interleaving 4 banks.

Calculated array block size:

Horizontal: calculated 2244um, defined 2244um (difference -0.0%)

Vertical: calculated 3396um, defined 3396um (difference -0.0%)

This compares the calculated array block size and the size defined in the input file. An iterative process should be used to achieve a

0% difference.

Pattern current and power:

Burst length is 4 clock cycles, used as multiplier for internal share of column and data operation in read

and write.

The burst length determines how many nop cycles in the pattern following a read or write command are really read or write com-

mands, not nop.

Activate current: 32.1mA (3% of 1156.9mA)

Precharge current: 6.2mA (3% of 223.1mA)

Write current: 0.0mA (0% of 0.0mA)

Read current: 0.0mA (0% of 0.0mA)

NOP current: 60.3mA (94% of 63.8mA)

Pattern power attributed to the different operations. The rightmost number is a fictive calculation value assuming one operation of a

certain type per clock cycle. The example DDR3 part is running at 800MHz, a clock cycle is therefore 1.25ns. A row cycle time of

45ns means one row cycle every 36 clock cycles or a utilization of about 3%. For read and write every fourth clock cycle which leads

to a full burst, the breakdown will say 25%, but the current will consider the burst length which has active data lines over all 4 clock

cycles.

Total current: 98.6mA

Power: 147.9mW

Current as sum over components and power a s current multiplied with supply voltage

DRAM Core Model

© 2010 Rambus Inc. 21 of 24

Power by location and voltage

core-varray 34.0

core-vperi 7.1

core-vpp 9.6

periphery-vcc 45.0

periphery-vperi 52.2

This output breaks down the contributors in large buckets. A more detailed breakdown is available in the file <name>_power.txt

Power by location

core 50.7

periphery 97.2

This output breaks down the contributors in large buckets. A more detailed breakdown is available in the file <name>_power.txt

Successful run of 'dram_model.pl'.

4.5.2. One-Dimension Run

Run with dram_model.pl –done ddr3_55nm_6f2_2g

Comments are inserted in green.

Evaluating specification-pattern-loop = act pre nop nop nop nop nop nop nop nop nop nop nop nop nop nop nop

nop nop nop nop nop nop nop nop nop nop nop nop nop nop nop nop nop nop nop

Parameters used in first instantiation of loop

Physical floorplan:

die width = 9456um, die height = 7722um

Control output

Power: 147.9mW (row period 45.00ns)

Power of first instantiation of loop

Evaluating specification-pattern-loop = rd nop nop nop

Power: 351.6mW (row period 60.00ns)

Parameters and power of second instantiation of loop

DRAM Core Model

© 2010 Rambus Inc. 22 of 24

Evaluating specification-pattern-loop = wrt nop nop nop

Power: 364.1mW (row period 60.00ns)

Parameters and power of third instantiation of loop. The sample input file shows a reduced swing on the master array data lines during

read as it is typical for DRAMs. The miscellaneous logic does not use different settings for read and write, so the read power is lower

than the write power. In a real DRAM read and write circuitry are partially different, so the difference in data line power might be

overcompensated leading to a higher read power than write power. Data sheets of different vendors show there are parts on the market

which have higher read power, higher write power or the same power.

Evaluating specification-pattern-loop = rd act pre nop rd act pre nop rd act pre nop rd act pre nop rd nop

nop nop rd nop nop nop rd nop nop nop rd nop nop nop

Power: 586.4mW (row period 10.00ns)

Parameters and power of fourth instantiation of loop

Evaluating specification-pattern-loop = wrt act pre nop rd act pre nop wrt act pre nop rd act pre nop wrt

nop nop nop rd nop nop nop wrt nop nop nop rd nop nop nop

Power: 592.7mW (row period 10.00ns)

Parameters and power of fifth instantiation of loop

Successful run of 'dram_model.pl'.

4.5.3. Array Block Size Determination

Calculating the array block size has not been fully automated due to the ambiguity which is possible if different aspect ratios are al-

lowed. Page size is not a sure differentiator as a logical page can either be the same as a physical page or it can be broken up into two

or more physical pieces. An iterative process, shown below in an example, can be used to put the exact array block size in the input

file.

Guess 1
For the first guess any reasonable number of a few thousand by a few thousand μm can be used. The program aborts whenever the

deviation between the guess and the calculated value is more than 5%
SizeHorizontal A1=4000um

SizeVertical A1=4000um

Output:
die width = 16480um, die height = 8930um

Horizontal: calculated 2244um, defined 2000um (difference 10.9%)

DRAM Core Model

© 2010 Rambus Inc. 23 of 24

Vertical: calculated 3396um, defined 3000um (difference 11.7%)

Guess 2
For the right number of bits in an array block there are different solutions possible depending on the aspect ratio. For this example a

guess of 4mm by 1.5mm is assumed.
SizeHorizontal A1=4000um

SizeVertical A1=1500um

Output:
die width = 16480um, die height = 3930um

Horizontal: calculated 4478um, defined 4000um (difference 10.7%)

Vertical: calculated 1740um, defined 1500um (difference 13.8%)

The resulting block size of 4.5mm by 1.7mm is close to the starting point. The die itself becomes however very long and thin (16.5mm

by 3.9mm), so this is not the aspect ratio one would implement when building a DRAM which should be between square and a 2:1

aspect ratio.

Guess 3
A starting point of 2mm by 3mm gives a good aspect ratio. The calculated block size can be put into the input file to achieve a 0% dif-

ference.
SizeHorizontal A1=2000um

SizeVertical A1=3000um

Output:
die width = 8480um, die height = 6930um

Horizontal: calculated 2244um, defined 2000um (difference 10.9%)

Vertical: calculated 3396um, defined 3000um (difference 11.7%)

© 2010 Rambus Inc.

<Document Title> 24 12/4/2010

Thomas Vogelsang

5. References
[1] T. Vogelsang, “Understanding the Energy Consumption of Dynamic Random Access

Memories”, Proceedings 43
rd

 Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Atlanta December 2010.

	User Manual DRAM Core Model
	1. Copyright and Disclaimer
	2. Overview
	3. Program Usage
	3.1. Contents of the Program Package
	3.2. Running the Program
	3.3. Important Usage Considerations
	3.4. Description Language
	3.4.1. General
	3.4.2. Acronyms
	3.4.3. Language Definition

	3.5. Wiring Topology Definition
	3.6. Presentation of Results
	3.6.1. Physical and Signaling Floorplan
	3.6.2. Power Results

	4. Program Details
	4.1. Program Structure
	4.2. Internal data structures
	4.2.1. FloorplanPhysical
	4.2.2. FloorplanSignaling
	4.2.3. Technology and Specification

	4.3. Calculation of Results
	4.3.1. Row current
	4.3.2. Sense-amplifier current
	4.3.3. Signal current
	4.3.4. Logic blocks

	4.4. Sample Input File
	4.5. Sample Output
	4.5.1. Zero-Dimension Run
	4.5.2. One-Dimension Run
	4.5.3. Array Block Size Determination
	Guess 1
	Guess 2
	Guess 3

	5. References

