CryptoManager Root of Trust RT-650

Fully-programmable, embedded FIPS 140-2 CMVP certified security co-processor, providing the flexibility of software with the security of hardware

Overview
The CryptoManager Root of Trust is a fully-programmable hardware security core that protects against a wide range of attacks with state-of-the-art anti-tamper and security techniques. Featuring all the capabilities of the RT-620, the RT-650 adds FIPS 140-2 CMVP certification for applications like defense, IoT, and others where compliance is required by law or by end customers. As with all CryptoManager Root of Trust 600-series products, the RT-650 features a custom 32-bit RISC-V siloed and layered secure co-processor, along with dedicated secure memories. This RISC-V based core is the ideal location for the execution of secure processes within an SoC or FPGA. A number of upgraded standard crypto accelerators included such as AES-AE-16, HMAC 512, RSA 4K, ECC 521, and a NIST-compliant RBG. The RT-650 is ideal for designs where FIPS 140-2 CMVP certification is required, security is a higher priority but silicon space is still at a premium.

Secure Processing

![Diagram of Secure Processing](image)

How It Works
The CryptoManager Root of Trust RT-650 is a siloed hardware security block for integration into semiconductors, offering secure execution of user applications, tamper detection and protection, secure storage and handling of keys and security assets, and resistance to side-channel attacks. The Root of Trust is easily integrated with industry-standard interfaces and system architectures and includes standard hardware cryptographic cores. Access to crypto modules, keys, memory ranges, I/O, and other resources is enforced in hardware. Critical operations, including key derivation and storage, are performed in hardware with no access by software.

Highlights

Superior Security
- Hardware root of trust featuring a custom RISC-V processor
- Secure in-core processing and industry-leading anti-tamper
- Multi-layered security model provides protection of all components in the core
- FIPS-140-2 CMVP certified

Enhanced Flexibility
- 3rd-party applications run securely within trusted boundary
- Complete development environment allows users to easily develop secure applications
- Leveraging all capabilities of the core; standard use case containers provided
- Support for secure provisioning of keys and firmware at manufacturing or in the field
- Support multiple roots of trust within a single core
Hardware-enforced, Software-configurable Operation
The CryptoManager Root of Trust is integrated as an independent hardware security block in semiconductor devices where security is needed. Once integrated into a semiconductor device, it provides a secure environment for performing a wide range of security functions in a simple and cost-effective manner, providing enhanced security functionality while providing faster time-to-market and significant differentiation.

Root of Trust Integration

Features
- 32-bit secure RISC-V processor
- Security model include hierarchical privilege model, secure key management policy, hardware-enforced isolation/access control/protection, error management policy
- Standard hardware cryptographic accelerators, including AES-AE-16, HMAC 512, RSA 4K, ECC 521, NIST-compliant RBG. FIPS 140-2 CMVP certified.
- Multi-layered security model protects all core components against a wide range of attacks
- Includes a wide range of security modules, including True Random Number Generator, Canary logic for protection against glitching and overclocking, secure key derivation and key transport, life cycle management, secure test and debug, feature management

Deliverables

Complete Documentation
- Hardware integration guide
- Hardware and software reference manuals
- Programming guides

Tools and Scripts
- Verilog for synthesis and simulation
- All scripts and support files needed for standard EDA tool flows

Integration Deliverables
- Complete verification test bench and comprehensive set of test vectors
- Boot loader and firmware, including secure RTOS and security monitor
- HLOS APIs for accessing capabilities
- Complete development environment, including compiler, assembler, debugger, simulator, reference code
- Available FGPA-based development board

Use Cases
- Secure data and key storage
- Device personalization
- Key and data provisioning
- Authentication and attestation
- Secure boot
- Secure firmware update
- Runtime integrity checking
- Feature/configuration/SKU management

rambus.com/cryptomanager